2021年江西省新余市丁家中学高二数学文测试题含解析_第1页
2021年江西省新余市丁家中学高二数学文测试题含解析_第2页
2021年江西省新余市丁家中学高二数学文测试题含解析_第3页
2021年江西省新余市丁家中学高二数学文测试题含解析_第4页
2021年江西省新余市丁家中学高二数学文测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年江西省新余市丁家中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数的图象与的图象都关于直线对称,则与的值分别为(

)A.

B.

C.

D.参考答案:D2.在集合中随机取一个元素,恰使函数大于1的概率为()A.1

B.

C.

D.参考答案:C3.由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A. B.4 C. D.6参考答案:C【考点】6G:定积分在求面积中的应用.【分析】利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.【点评】本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题.4.从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为(

)A99

B

99.5

C100

D100.5参考答案:C5.曲线在点(1,2)处的切线方程为

A.

B.

C.

D.

参考答案:A略6.设是实数,则“”是“”的

)(A)充分不必要条件

(B)必要不充分条件(C)充要条件

(D)既不充分也不必要条件参考答案:A略7.在古希腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形则第个三角形数为

)A.

B.

C.

D.参考答案:B略8.给出的程序框图如图,那么输出的数是()A.2450 B.2550 C.5050 D.4900参考答案:A【考点】循环结构.【分析】首先根据程序框图,分析sum求和问题,然后根据等差数列求和问题求解s.最后输出s的值.【解答】解:根据题意,按照程序框图进行运算:s=0

i=2s=2

i=4s=6

i=6s=12

i=8…i=100s=2+4+6+10+…+98s为首项为2,末项为98的等差数列∴s=2450故选A.9.设函数f(x)的定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3.则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣,]上的所有零点的和为()A.7 B.6 C.3 D.2参考答案:A【考点】52:函数零点的判定定理.【分析】根据f(x)的对称性和奇偶性可知f(x)在[﹣,]上共有3条对称轴,x=0,x=1,x=2,根据三角函数的对称性可知y=|cos(πx)|也关于x=0,x=1,x=2对称,故而g(x)在[﹣,]上3条对称轴,根据f(x)和y=|cos(πx)|在[0,1]上的函数图象,判断g(x)在[﹣,]上的零点分布情况,利用函数的对称性得出零点之和.【解答】解:∵f(x)=f(2﹣x),∴f(x)关于x=1对称,∵f(﹣x)=f(x),∴f(x)根与x=0对称,∵f(x)=f(2﹣x)=f(x﹣2),∴f(x)=f(x+2),∴f(x)是以2为周期的函数,∴f(x)在[﹣,]上共有3条对称轴,分别为x=0,x=1,x=2,又y=|cos(πx)关于x=0,x=1,x=2对称,∴x=0,x=1,x=2为g(x)的对称轴.作出y=|cos(πx)|和y=x3在[0,1]上的函数图象如图所示:由图象可知g(x)在(0,)和(,1)上各有1个零点.又g(1)=0,∴g(x)在[﹣,]上共有7个零点,设这7个零点从小到大依次为x1,x2,x3,…x6,x7.则x1,x2关于x=0对称,x3,x5关于x=1对称,x4=1,x6,x7关于x=2对称.∴x1+x2=0,x3+x5=2,x6+x7=4,∴x1+x2+x3+x4+x5+x6+x7=7.故选:A.10.“”是“直线平行于直线”的(

)

A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.▲.参考答案:

略12.已知随机变量X的分布列为,那么实数a=_____.参考答案:3【分析】根据概率之和为1,即可求出结果.【详解】因为随机变量的分布列为,所以,因此.故答案为3【点睛】本题主要考查概率的性质,熟记概率性质即可,属于基础题型.13.若△ABC的内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列,c=2a,则cosB的值为

.参考答案:【考点】余弦定理.【专题】计算题.【分析】由a,b,c,且a,b,c成等比数列且c=2a可得,b=,c=2a,结合余弦定理可求【解答】解:∵a,b,c,且a,b,c成等比数列且c=2ab2=ac=2a2,b=,c=2a=故答案为:【点评】本题主要考查了等比中项的定义的应用,余弦定理在解三角形中的应用,属于基础试题14.

=

.参考答案:15.椭圆上一点到焦点的距离为,是的中点,则等于___________.参考答案:4略16.从双曲线的左焦点引圆的切线,切点为,延长交双曲线右支于点,若为线段的中点,为坐标原点,

则=

参考答案:1略17.设是双曲线的左,右两个焦点,若双曲线右支上存在一点P,使(O为坐标原点),且,则双曲线的离心率是

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题13分)根据如图所示的程序框图,将输出的x,y值依次分别记为x1,x2,…,xk,…;y1,y2,…,yk,….(1)分别求数列{xk}和{yk}的通项公式;(2)令zk=xkyk,求数列{zk}的前k项和Tk,其中k∈N*,k≤2007.参考答案:(1)由框图,知数列{xk}中,x1=1,xk+1=xk+2,∴xk=1+2(k-1)=2k-1(k∈N*,k≤2007)由框图,知数列{yk}中,yk+1=3yk+2,∴yk+1+1=3(yk+1)∴=3,y1+1=3.∴数列{yk+1}是以3为首项,3为公比的等比数列,∴yk+1=3·3k-1=3k,∴yk=3k-1(k∈N*,k≤2007).(2)Tk=x1y1+x2y2+…+xkyk=1×(3-1)+3×(32-1)+…+(2k-1)(3k-1)=1×3+3×32+…+(2k-1)·3k-[1+3+…+(2k-1)]记Sk=1×3+3×32+…+(2k-1)·3k

①则3Sk=1×32+3×33+…+(2k-1)·3k+1

②①-②,得-2Sk=3+2·32+2·33+…+2·3k-(2k-1)·3k+1=2(3+32+…+3k)-3-(2k-1)·3k+1=2×-3-(2k-1)·3k+1=3k+1-6-(2k-1)·3k+1=2(1-k)·3k+1-6∴Sk=(k-1)·3k+1+3∴Tk=(k-1)·3k+1+3+k219.已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).(1)写出S1,S2,S3,S4,并猜想Sn的表达式;(2)用数学归纳法证明你的猜想,并求出an的表达式.参考答案:【考点】RG:数学归纳法;F1:归纳推理.【分析】(1)先根据数列的前n项的和求得S1,S2,S3,S4,可知分母和分子分别是等差数列进而可猜想出Sn.(2)用数学归纳法证明数列问题时分为两个步骤,第一步,先证明当n=1时,结论显然成立,第二步,先假设当n=k+1时,有Sk=,利用此假设证明当n=k+1时,结论也成立即可.【解答】解:(1):∵a1=1,Sn=n2an,∴S1=a1=1,当n=2时,S2=a1+a2=4a2,解得a2=,S2=1+=,当n=3时,S3=a1+a2+a3=9a3,解得a3=,S3=1++==,当n=4时,S4=a1+a2+a3+a4=16a4,解得a4=,S4=,∴Sn=(2)下面用数学归纳法证①当n=1时,结论显然成立.②假设当n=k时结论成立,即Sk=,则当n=k+1时,则Sk+1=(k+1)2ak+1=(k+1)2(Sk+1﹣Sk),∴(k2+2k)Sk+1=(k+1)2Sk=(k+1)2,∴Sk+1=故当n=k+1时结论也成立.由①、②可知,对于任意的n∈N*,都有Sn=,∵Sn=n2an,∴an===20.(本小题满分12分)设正项等比数列的前项和为,且.(1)求数列的通项公式;(2)令,求数列的前项和为.参考答案:(1);(2)21.某商场为了促销,采用购物打折的优惠办法:每位顾客一次购物:①在1000元以上者按九五折优惠;②在2000元以上者按九折优惠;③在5000元以上者按八折优惠。(1)写出实际付款y(元)与购物原价款x(元)的函数关系式;(2)写出表示优惠付款的算法;参考答案:(1)设购物原价款数为元,实际付款为元,则实际付款方式可用分段函数表示为:(2)用条件语句表示表示为:22.(10分)(2010?新课标)设等差数列{an}满足a3=5,a10=﹣9.(Ⅰ)求{an}的通项公式;(Ⅱ)求{an}的前n项和Sn及使得Sn最大的序号n的值.参考答案:【考点】等差数列的通项公式;等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{an}的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论