高中数学-直线与平面垂直的判定教学设计学情分析教材分析课后反思_第1页
高中数学-直线与平面垂直的判定教学设计学情分析教材分析课后反思_第2页
高中数学-直线与平面垂直的判定教学设计学情分析教材分析课后反思_第3页
高中数学-直线与平面垂直的判定教学设计学情分析教材分析课后反思_第4页
高中数学-直线与平面垂直的判定教学设计学情分析教材分析课后反思_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.学生能从生活中的具体实例感知概括线面垂直的特征,解释“直线与平面垂直”的含义.

2.学生通过参与折纸试验,归纳和确认直线与平面垂直的判定定理,并尝试用数学语言(文字、符号、图形语言)对定义、定理进行准确表述.

3.学生在探究活动中会用直线与平面垂直的定义和判定定理进行简单的推理论证,并体会线线垂直与线面面垂直相互转化的数学思想,从而更好地发展学生的合情推理能力和演绎推理能力,培养其空间想象能力.

4.在探究活动中,学生亲历从“感性认识”到“理性认识”获取新知的过程,体验探索的乐趣,通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.1.学生已有认知基础(1)学生在初中已经掌握了平面内证明线线垂直的方法,学习本课前,学生又通过直观感知、操作确认的方法,学习了直线、平面平行的判定定理,对空间概念建立有一定基础,同时,获得了研究线面位置关系时,从定义到判定,再到性质的经验,因而会比较轻松地融入对本课的探究.(2)虽然学生对空间几何体的学习有了一段时间,已经具备了基本的图形语言能力,但对问题的说理和论证只是刚刚接触,没有形成一种熟练运用文字语言和符号语言的能力,存在对问题的推理和论证还有些望而却步,难以把理论和实践结合到一起.2.达成目标所需要的认知基础学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.3.难点及突破策略难点:对直线与平面垂直的定义的理解和对判定定理的探究.突破策略:1.理解直线与平面垂直的定义,让学生认识到线面垂直是用线线垂直来刻画的,逐步形成概念体系,体会其中的转化思想,这对于高一的学生来讲是比较困难的.所以在设计教学时,首先通过一组图片让学生直观感知直线与平面垂直的具体形象,然后将其抽象为几何图形,再用数学语言对几何图形进行精确的描述,让学生在此过程中体会直线与平面垂直定义的合理性.2.用定义去判定直线与平面垂直是不方便的,如何在较短的时间内,让多数学生找到判定直线与平面垂直的简便方法,这需要一个较好的载体,去引导学生探究直线与平面垂直的判定定理,同时完成对定理条件的确认.所以,在教学过程中,通过折纸试验,精心设置问题,引导学生归纳出直线与平面垂直的判定定理.并且引导学生通过操作、摆出反例模型,对定理的两个关键条件“双垂直”和“相交”进行理解和确认.一.课堂检测:如图7,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点.

求证:AC⊥平面VKB思考:

(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;

(2)在⑴中,若E、F分别是AB、BC的中点,试判断EF与平面VKB的位置关系;二.课外评测1.下列关于直线与平面的命题中,真命题是()若且,则若且,则若且,则且,则 2.已知直线a、b和平面M、N,且,那么 () (A)∥Mb⊥a (B)b⊥ab∥M(C)N⊥Ma∥N (D)3.在正方体中,点在侧面及其边界上运动,并且保持,则动点的轨迹为()线段线段的中点与的中点连成的线段的中点与的中点连成的线段4.三条不同的直线,、、为三个不同的平面 ①若∥ ②若∥. ③若、 ④若∥ 上面四个命题中真命题的个数是 5.如图,矩形所在的平面,分别是的中点,(1)求证:平面;(2)求证:(3)若,求证:平面评课记录评课时间2016年4月29日学科数学主持人李现勇授课人课题2.3.1直线与平面垂直的判定交流过程记录体现新课程改革指导思想,突出三维目标。发挥教师主导作用,落实学生主体地位,注重了合作探究。教学过程设计优化,各环节衔接自然,层次分明。突出重点,分散难点,时间分配合理,教学方法。板书设计巧妙,工整,教态自然,亲切,语言精炼,普通话标准。能熟练应用多媒体。因为不是自己的学生,所以配合上有点欠熟练。《直线与平面垂直的判定》共2课时,本课是第1课时,本节课的内容包括直线与平面垂直的定义和判定定理两部分,均为概念性知识.本节内容以“垂直”的判定为主线展开,“垂直”在定义和描述直线和平面位置关系中起着重要的作用,集中体现在:空间中垂直关系的相互转化.

教学重点是直线与平面垂直的判定定理的探究及简单应用.尽管新课标在必修课程中不要求证明,但通过定理的探索过程,培养和发展学生的几何直觉以及运用图形语言进行交流的能力,并体会“平面化”以及“降维”的转化思想,是本节课的重要任务.

空间直线与平面的垂直关系是学生在已有“直线与平面位置关系,直线与直线垂直定义与判定”的基础上,又一次接触空间位置关系,是对垂直关系的再认识,是学生认知在维度和深度上的又一次拓展.

本节课采用直观感知、操作确认、推理论证、度量计算等研究几何问题的方法,学习了直线与平面垂直的定义、判定定理及其初步运用.其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,.学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的.2.3.1直线与平面垂直的判定【教学目标】(一)知识目标:1、直线与平面垂直的定义2、直线与平面垂直的判定定理(二)能力目标:1、转化思想:空间问题转化为平面问题是处理立体几何问题的重要思想空间中线线位置关系与线面位置关系的互相转化;2、类比思想:研究线面平行时研究了定义,判定定理和性质定理,类比研究线面垂直3、培养数学思维过程【教学重点】直线与平面垂直的定义、判定定理及其简单应用.【教学难点】判定定理的探索与归纳;判定定理和定义在解决垂直问题中的交互与转化.【教学方式】启发探究式【教学手段】计算机、自制课件、实物模型.【教学过程】1.从实际背景中感知直线与平面垂直的形象

问题1:空间一条直线和一个平面有哪几种位置关系?

问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明.

设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义.2.提炼直线与平面垂直的定义

问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?

设计意图:两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,让学生回忆直线与直线垂直的定义,旨在由此得到启发:用“平面化”的思想来思考问题,即能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直?

问题4:结合对下列问题的思考,试着给出直线和平面垂直的定义.

(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?

(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?

(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么设计意图:主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念.

(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)

思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?

(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)

设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念.通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法.

通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验.这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法.

3.探究直线与平面垂直的判定定理

学生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)

问题5:(1)折痕AD与桌面垂直吗?

(2)如何翻折才能使折痕AD与桌面所在的平面垂直?(组织学生动手操作、探究、确认)

设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直.

问题6:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内.问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)

设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线.问题7:如果将图3中的两条相交直线、的位置改变一下,仍保证

,(如图4)你认为直线还垂直于平面吗?

设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的.

根据试验,请你给出直线与平面垂直的判定方法.

(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)

问题8:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么?

设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.

4.直线与平面垂直判定定理的应用

例1.如图6,已知,则吗?请说明理由.

(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)

设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系.巩固练习:如图7,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点.

求证:AC⊥平面VKB变式:

(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;

(2)在⑴中,若E、F分别是AB、BC的中点,试判断EF与平面VKB的位置关系;

设计意图:巩固练习重在对直线与平面垂直判定定理的应用.变式(1)在上题的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;2个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融会贯通.5.直线与平面所成的角.(1)定义:一条直线和一个平面相交,但不垂直,这条直线称为平面的斜线,斜线与平面的交点叫做斜足.过斜线上斜足以外的一点向平面引垂线,过斜足和垂足的直线叫做斜线在平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做直线和平面所成的角,如图,∠PAO就是斜线AP与平面α所成的角.(2)特别的,当直线AP与平面α垂直时,它们所成的角是90°;当直线与平面平行,或在平面内时,它们所成的角是0°.(3)直线和平面所成角θ的范围[0°,90°].例2.如图所示,在正方体ABCD-A1B1C1D1中,(1)求直线A1B和平面ABCD所成的角。(2)求直线A1B和平面A1B1CD所成的角。巩固练习:如上图:正方体ABCD-A1B1C1D1中,求:(1)A1C1与面ABCD所成的角(2)A1C1与面BB1D1D所成的角(3)A1C1与面BB1C1C所成的角设计意图:主要是求线面角分三步一证二找三求。汇集了本节课的学习内容,突出了知识间内在联系和融会贯通.小结:(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述.(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?(3)直线与平面所成角的定义及怎么求线面角?

检测设计

1.课本探究:如图2.3-7,直四棱柱A1B1C1D1-ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A1C⊥B1D1.

【板书设计】一、直线与平面垂直的定义二、直线与平面垂直的判定定理三、例题例1巩固练习直线与平面所成的角概念例2巩固练习【作业布置】课本练习21、启发激趣,让课堂生动活泼。兴趣是构成学生学习动机中最为活泼、最为现实的成分。有了兴趣,还会萌发创新意识,而在创新过程中产生的无穷无尽的兴趣,又再次促进创新。兴趣越大,学习的效率就越高。2、质疑交流,让课堂有理有趣。教师要通过让学生自己提问来组织教学,引导学生积极参与、主动探索、为他们创设动脑、动口、动手、释疑解难的机会,通过师生平等交流,培养独立思考,解决实际问题的能力,从而发挥学生的主体作用。3、提倡“合作”,让课堂精诚团结。合作学习能满足学生的心理需要,促进学生的情感发展,充分发挥学生的积极性和主动性。在学生群体这种合作学习的过程中,教师的任务就是当好引导者,及时点拨。合作学习的好处:第一,培养和训练了口头表达能力。第二,拓宽思维,深化学生的认识。第三,可以培养合作精神。4、运用电教手段,让课堂丰富形象。运用现代教学手段进行多媒体教学,可以提高学生的学习兴趣,加深对教学内容的理解,发展学生的观察能力和思维能力,获得课堂教学的高效率。5、体现人文主义,让课堂精彩生动。面向全体学生教学,才能大面积提高教学质量。而要真正做到面向全体学生,就必须因材施教。对不同层次的学生根据他们的起点提出不同程度的要求,就能使他们在各自的起点上有所提高。高效的数学课堂是一个充满数学味的魅力课堂,也是让学生学有所得的效率课堂,还是着眼于学生全面发展的生命课堂。教后反思回顾

一.关于教学设计的反思

本节课的教学设计,力图体现因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论