大学基因工程论文_第1页
大学基因工程论文_第2页
大学基因工程论文_第3页
大学基因工程论文_第4页
大学基因工程论文_第5页
已阅读5页,还剩110页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1大学基因工程论文第一篇:大学基因工程论文浅析基因工程技术的应用现状动物医学专业任课教师指导教师姓名摘要:基因工程作为一门理论性与实践性较强的学科,其方法与技术已经渗透到现代生命科学的各个分支领域,成为生命科学的一门核心技术。基因工程包含许多独特的实验方法和技术,不仅内容丰富,涉及面广,实用性也强。基因工程是通过DNA重组技术,获得具有特殊生物遗传性状和功能的遗传工具生物体,基因工程技术广泛应用于农业、医学、食品工业等。本文就基因工程的应用现状综合阐述。关键词:基因工程;应用现状ShallowgeneengineeringtechnologyapplicationstatusStudentmajoringinVeterinaryMedicineYinxunqiangTutorMinlingjiangAbstract:Geneticengineeringasadoorthetheorywithpracticalstrongsubject,themethodandtechnologyhaspenetratedintothemodernlifescienceofeachbranch,becomelifescienceandacoretechnology.Geneticengineeringcontainsmanyuniqueexperimentmethodandtechnique,notonlyrichcontent,broadandpracticalalsostrong.geneengineeringisobtainedthroughDNArecombinanttechnology,withspecialbiologicalgeneticsandfunctionofthegenetictoolsorganisms,geneticengineeringtechnology,widelyusedinagriculture,medicine,foodindustryetc.Thispapergeneticengineeringapplicationstatusofcomprehensiveelaboration.Keywords:geneengineering,DNArecombinanttechnology,Applicationstatus0.前言基因工程技术是一项极为复杂的高新生物技术,它利用现代遗传学与分子生物学的理论和方法,按照人类所需,用DNA重组技术对生物基因组的结构和组成进行人为修饰或改造,从而改变生物的结构和功能,使之有效表达出人类所需要的蛋白质或人类有益的生物性状[1]。基因工程从诞生至今,仅有30年的历史,然而,无论是在基础理论研究领域,还是在生产实际应用方面,都已取得了惊人的成绩。首先,基因工程给生命科学自身的研究带来了深刻的变化。目前科学家已完成了多种细胞器的基因组全序列测定工作。其次,基因工程具有广泛的应用价值,能为工农业生产、医药卫生、环境保护开辟新途径。1.基因工程1.1概念基因工程(又称DNA重组技术、基因重组技术),是20XX纪70年代初兴起的技术科学,是用人工的方法将目的基因与载体进行DNA重组,将DNA重组体送入受体细胞,使它在受体细胞内复制、转录、翻译,获得目的基因的表达产物。这种跨越天然物种屏障,把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力,是基因工程技术区别于其他技术的根本特征。1.2基因工程研究内容(1)从复杂的生物有机体基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片段。(2)在体外,将带有目的基因的外源DNA片段连接到能够自我复制并具有选择记号的载体分子上,形成重组DNA分子。(3)重组DNA分子转移到适当的受体细胞,并与之一起增殖。(4)从大量的细胞繁殖群体中,筛选出获得了重组DNA分子的受体细胞克隆。(5)从这些筛选出来受体细胞克隆,提取出已经得到扩增的目的基因,供进一步分析研究使用。(6)将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要的物质。2.基因工程的广泛应用2.1在农业上的应用2.1.1抗除草剂的植物基因工程资料表明,每年杂草造成的经济损失占农作物总产值的10%-20XX右尽管除草剂的使用,对大规模机械化耕作,减少劳力开支和提高量有极为重要的作用,但一般除草剂的选择性较差,即除了杀草以外,还会将作物杀死。现在利用生物技术,将能抵抗除草剂的基因转移到植物中,获得抗除草剂的植物,如美国的孟山都公司将除草剂草甘磷的靶酶(EPSPS)的cDNA克隆转入油菜[2],目前,已获得的抗除草剂作物有大豆、棉花、玉米、水稻和甜菜等20XX种。2.1.2抗虫的植物基因工程生物防治害虫的工作已经开展多年,主要是利用苏云金杆菌中的毒蛋白(结晶蛋白)对害虫有毒害作用,使用这些杆菌来控制害虫。现在,人们可以通过克隆这些毒蛋白的基因(Bt基因)并把这些基因转移到植物细胞中,从而获得能抗虫的转基因植物。目前,Bt基因已被转入烟草、番茄、马铃薯、水稻、玉米及棉花等多种植物中。1996年转Bt基因棉花在美国种植66万hm2经中国农科院棉花所引进在华北试种两年,在多点表现突出,在完全不喷杀虫剂的情况下,单产仍然高于喷撒2-3次杀虫剂的中国推广棉花[3],显示出了控制棉铃虫的极好前景。2.1.3动物转基因育种动物基因工程研究主要集中在改良家畜、家禽的经济性状和通过转基因动物进行药物或蛋白质的生产等方面,目前已取得了显著的成就,先后培育出转基因猪、羊、牛和鱼等,另一种转基因猪是带有人体基因的猪,这种转基因猪客望能解决人体移植动物器官的遗体排斥问题。随着动物基因工程技术的逐渐成熟和转人体血红蛋白的基因猪、转人体血清蛋白的基因山羊等的问世,不仅能生产出大量人类所需的血红蛋白、白蛋白等药物而且为动物育种开辟了一条全新的途径。2.2在医学上的应用2.2.1基因工程药物利用基因工程技术开发新型治疗药物是当前最活跃和发展最快的领域。自1982年世界第一个基因工程药物重组胰岛素投放市场以来,基因工程药物就成为制药行业的一支奇兵,每年平均有3-4个新药或疫苗问世,开发成功的约50个药品,诸如人胰岛素、忍尿激酶、人生长激素、干扰素、激活剂、乙肝疫苗等广泛应用于治疗癌症、肝炎、发育不良、糖尿病和一些遗传病上,在很多领域特别是疑难病症上,起到了传统化学药物难以达到的作用[4,5,6]。为治愈癌症正在研制的用单克隆抗体制成的“生物导弹”,就是按照人类的设计,把“生物导弹”发射出去,精确的命中癌细胞,并炸死癌细胞,而不伤害健康的细胞,比如专门用于肿瘤的“肿瘤基因导弹”等。可见,生物工程药物将成为21世纪药业的支柱。而脱氧核糖核酸或者基因疫苗的问世,变革了机体的免疫方式。如今,人们翘首关注困扰人类的艾滋病病毒疫苗的早日问世。尽管目前诱变育种技术仍是改良微生物工业生产菌种的主要手段,但是基因工程技术在改良工业生产菌种方面已有成功的报道。最常见的是将控制药物合成关键步骤的酶基因克隆,通过适当的载体转移到原生产菌中,以使控制限速步骤的酶水平,从而提高产量。Malmberg等[7]构建了一种带有编码赖氨酸ε-氨基转移酶基因(lysine-ε-aminotranster-ase,LAT)这种控制Streptomycesclavuligerus生物合成头霉素C的限速步骤的关键酶的基因(lat)的高拷贝质粒,并转入这种头霉素产生菌,使LAT提高活力提高了4倍,在2L发酵罐中产生头霉素的能力是原来的2倍,重组菌胞外LAT产物α-氨基己二酸的积累量也比原受体菌高。伊维菌素(ivermectins)是一个市场很大的抗虫抗生素,其前体阿弗米丁(avermectins)的产生菌种的发酵液中有8个以上的组分,其中只有B1a组分才是制备伊维菌素的原料。Ikeda等[8]经过近十年的努力,已将阿弗米丁的生物合成基因簇全部搞清,并经过诱变与DNA重组,获得了仅产阿弗米丁B2a单一组分和B1a、B2a组份的重组工程菌,这不仅大大提高了阿弗米丁有效组分的发酵效价,且给提取、精制、半合成等后处理工序带来了很大的便利。可以预见,随着对各种工业生产的微生物药物生物合成途径的深入了解以及基因重组技术的不断进展,应用基因工程方法定向构建高产菌株的成功实例将越来越多。在抗生素发酵过程中供氧往往是一个限制因素,充足的氧气供给是药物工业发酵稳定和提高产量,降低成本的关键。传统的解决方法如增加通气量等对设备要求高,能量消耗大。20XX0年代末在专性好氧菌透明颤(Vitreoscilla)中发现了血红蛋白(VHb),它能促进氧气扩散到细胞末端氧化酶上。于是人们想到了将其基因Vgb克隆到其它微生物中,以促进微生物在低氧条件下生长。1988年Khosla等[9]从Vitreoscilla中分离出Vgb基因并将之转入大肠杆菌(E·coli),提高了大肠杆菌在溶氧量低于5%时对氧的利用率。目前已用克隆表达VHb的方法提高了放线紫红素、头孢霉素C、红霉素等产生菌及青霉素酰化酶基因工程菌的产量[10]。血红蛋白基因工程的研究和应用,必将对抗生素工业和其它重组药物发酵工业的节能等带来美好的前景。作为半合成头孢菌素类抗生素重要原料的7-氨基头孢烷酸(7-ACA),目前国内外仍以化学裂解头孢菌素C的工艺路线为主。国内外已报道可用经由GL-7-ACA的二步法(化学/酶法或二步酶法)来生产7-ACA,与化学裂解法相比不仅收率提高,且能大大减少环境污染,简化生产工艺。但二步法中关键的GL-7-ACA酰化酶在假单胞菌中表达量低而且分离纯化困难,限制了这种方法的应用。通过将GL-7-ACA酰化酶基因转入大肠杆菌中表达恰好可以解决这一问题[11]。最近又报道可将编码2个酶的基因直接转入头孢菌素C的生产菌种中,使其在发酵时直接产生7-ACA。调节基因在药物的生物合成中也起着重要作用,增加调节基因的基因量能够大幅提高药物产量。Hopwood等将放线紫红素生物合成的一个调节基因actⅡ导入原产生菌,尽管基因的拷贝数仅增加了2倍,放线紫红素的产量却增加了30~40倍。某些抗生素生产菌的产量不高,是由于其自身对该抗生素的抗性不高。因此,利用高拷贝质粒的基因量效应,增加菌种对自身产生的抗生素的抗性,可能增加抗生素的产量。例如,将氨基糖苷-6-乙酰转移酶基因导入卡那霉素和新霉素产生菌,由于提高了对氨糖类抗生素的抗性,产量提高了2~6倍2.2.2基因治疗基因治疗是指由于某种基因缺陷引起的遗传病通过转基因技术而得到纠正。临床实践已经表明:基因治病已经变革了整个医学的预防和治疗领域。比如白痴病,用健康的基因更换或者矫正患者的有缺损的基因,就有可能根治这种疾病。现在已知的人类遗传病约有4000种,包括单基因缺陷和多基因的综合症。运用基因工程技术或基因打靶的手段,将病毒的基因杀灭,插入矫正基因,得以治疗、校正和预防遗传疾病的目的。目前,基因治疗已扩大到肿瘤、心血管系统疾病、神经系统疾病等的治疗[12]。人类也已成功实现了肾、心、肝、胰、肺等器官的移植,也有双器官和多器官的联合移植。基因治疗有两种途径:一是体细胞的基因治疗,一是生殖细胞的基因治疗。由于生殖细胞的基因治疗操作技术异常复杂,又涉及伦理缓行之理充足,故尚无人涉足[13]。基因工程是20XX纪生命科学中最伟大的成绩,开辟了生命科学的新纪元。经过几十年的发展,基因工程技术已成为一个巨大的朝阳产业,它可以超越动物、植物、微生物之间的界限,创造出新的生物类型。基因工程不仅在医学上应用广泛,而且也广泛应用在工业、农业、冶金、环保、资源、能源、畜牧渔业等领域,为人类的丰衣足食和健康长寿提供了持续的实用价值很高的产品,发展前景极为广阔。参考文献:[1]陈渝军,林晶.基因工程技术在医药卫生领域的应用及发展.药品评价,20XX,2(2):144-145.[2]童克中.基因及其表达.北京:科学出版社,20XX.[3]李尉民,乐宁,夏红民.转基因生物及其产品的风险与管理.生物技术通报.20XX(4)41-44.[4]朱宝泉.基因工程技术在医学工业中的应用及进展[J].中国医药工业志.1997.28(2):56-58.[5]方鹏.基因工程应用简述[J].辽宁师专学报.20XX.6(2):29-30.[6]周黎,柯传奎.基因工程药物研究现状与对策[J].生命科学仪器20XX.1:22.[7]MalmbergLH,HuWS,ShermanDH·JournalofBacteriology,1993,175(11):6916~6924·[8]HaruoIkeda,SatoshiOmura·JournalofAntibiotics,1995,48(7):549~562·[9]ChaitanKhosla,JamesEB·Nature,1988,331:633~635·[10]郭宏秋,杨胜利·微生物学通报,1996,23(4):227~230·[11]周煜,刘涤,胡之璧·药物生物技术,20XX,7(4):251~253·[12]路正兵,夏颖.基因工程在疾病防治及药物研制上的应用[J].安徽预防医学杂志.20XX.6(5):398-400.[13]王俊杰21世纪基因工程在肿瘤防治中的应用[J]20XX.6(6):62-67.第二篇:基因工程论文(范文模版)浅析基因工程技术的应用现状动物医学专业任课教师指导教师姓名摘要:基因工程作为一门理论性与实践性较强的学科,其方法与技术已经渗透到现代生命科学的各个分支领域,成为生命科学的一门核心技术。基因工程包含许多独特的实验方法和技术,不仅内容丰富,涉及面广,实用性也强。基因工程是通过DNA重组技术,获得具有特殊生物遗传性状和功能的遗传工具生物体,基因工程技术广泛应用于农业、医学、食品工业等。本文就基因工程的应用现状综合阐述。关键词:基因工程;应用现状0.前言基因工程技术是一项极为复杂的高新生物技术,它利用现代遗传学与分子生物学的理论和方法,按照人类所需,用DNA重组技术对生物基因组的结构和组成进行人为修饰或改造,从而改变生物的结构和功能,使之有效表达出人类所需要的蛋白质或人类有益的生物性状[1]。基因工程从诞生至今,仅有30年的历史,然而,无论是在基础理论研究领域,还是在生产实际应用方面,都已取得了惊人的成绩。首先,基因工程给生命科学自身的研究带来了深刻的变化。目前科学家已完成了多种细胞器的基因组全序列测定工作。其次,基因工程具有广泛的应用价值,能为工农业生产、医药卫生、环境保护开辟新途径。1.基因工程1.1概念基因工程(又称DNA重组技术、基因重组技术),是20XX纪70年代初兴起的技术科学,是用人工的方法将目的基因与载体进行DNA重组,将DNA重组体送入受体细胞,使它在受体细胞内复制、转录、翻译,获得目的基因的表达产物。这种跨越天然物种屏障,把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力,是基因工程技术区别于其他技术的根本特征。1.2基因工程研究内容(1)从复杂的生物有机体基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片段。(2)在体外,将带有目的基因的外源DNA片段连接到能够自我复制并具有选择记号的载体分子上,形成重组DNA分子。(3)重组DNA分子转移到适当的受体细胞,并与之一起增殖。(4)从大量的细胞繁殖群体中,筛选出获得了重组DNA分子的受体细胞克隆。(5)从这些筛选出来受体细胞克隆,提取出已经得到扩增的目的基因,供进一步分析研究使用。(6)将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要的物质。2.基因工程的广泛应用2.1在农业上的应用2.1.1抗除草剂的植物基因工程资料表明,每年杂草造成的经济损失占农作物总产值的10%-20XX右尽管除草剂的使用,对大规模机械化耕作,减少劳力开支和提高量有极为重要的作用,但一般除草剂的选择性较差,即除了杀草以外,还会将作物杀死。现在利用生物技术,将能抵抗除草剂的基因转移到植物中,获得抗除草剂的植物,如美国的孟山都公司将除草剂草甘磷的靶酶(EPSPS)的cDNA克隆转入油菜[2],目前,已获得的抗除草剂作物有大豆、棉花、玉米、水稻和甜菜等20XX种。2.1.2抗虫的植物基因工程生物防治害虫的工作已经开展多年,主要是利用苏云金杆菌中的毒蛋白(结晶蛋白)对害虫有毒害作用,使用这些杆菌来控制害虫。现在,人们可以通过克隆这些毒蛋白的基因(Bt基因)并把这些基因转移到植物细胞中,从而获得能抗虫的转基因植物。目前,Bt基因已被转入烟草、番茄、马铃薯、水稻、玉米及棉花等多种植物中。1996年转Bt基因棉花在美国种植66万hm2经中国农科院棉花所引进在华北试种两年,在多点表现突出,在完全不喷杀虫剂的情况下,单产仍然高于喷撒2-3次杀虫剂的中国推广棉花[3],显示出了控制棉铃虫的极好前景。2.1.3动物转基因育种动物基因工程研究主要集中在改良家畜、家禽的经济性状和通过转基因动物进行药物或蛋白质的生产等方面,目前已取得了显著的成就,先后培育出转基因猪、羊、牛和鱼等,另一种转基因猪是带有人体基因的猪,这种转基因猪客望能解决人体移植动物器官的遗体排斥问题。随着动物基因工程技术的逐渐成熟和转人体血红蛋白的基因猪、转人体血清蛋白的基因山羊等的问世,不仅能生产出大量人类所需的血红蛋白、白蛋白等药物而且为动物育种开辟了一条全新的途径。2.2在医学上的应用2.2.1基因工程药物利用基因工程技术开发新型治疗药物是当前最活跃和发展最快的领域。自1982年世界第一个基因工程药物重组胰岛素投放市场以来,基因工程药物就成为制药行业的一支奇兵,每年平均有3-4个新药或疫苗问世,开发成功的约50个药品,诸如人胰岛素、忍尿激酶、人生长激素、干扰素、激活剂、乙肝疫苗等广泛应用于治疗癌症、肝炎、发育不良、糖尿病和一些遗传病上,在很多领域特别是疑难病症上,起到了传统化学药物难以达到的作用[4,5,6]。为治愈癌症正在研制的用单克隆抗体制成的“生物导弹”,就是按照人类的设计,把“生物导弹”发射出去,精确的命中癌细胞,并炸死癌细胞,而不伤害健康的细胞,比如专门用于肿瘤的“肿瘤基因导弹”等。可见,生物工程药物将成为21世纪药业的支柱。而脱氧核糖核酸或者基因疫苗的问世,变革了机体的免疫方式。如今,人们翘首关注困扰人类的艾滋病病毒疫苗的早日问世。尽管目前诱变育种技术仍是改良微生物工业生产菌种的主要手段,但是基因工程技术在改良工业生产菌种方面已有成功的报道。最常见的是将控制药物合成关键步骤的酶基因克隆,通过适当的载体转移到原生产菌中,以使控制限速步骤的酶水平,从而提高产量。Malmberg等[7]构建了一种带有编码赖氨酸ε-氨基转移酶基因(lysine-ε-aminotranster-ase,LAT)这种控制Streptomycesclavuligerus生物合成头霉素C的限速步骤的关键酶的基因(lat)的高拷贝质粒,并转入这种头霉素产生菌,使LAT提高活力提高了4倍,在2L发酵罐中产生头霉素的能力是原来的2倍,重组菌胞外LAT产物α-氨基己二酸的积累量也比原受体菌高。伊维菌素(ivermectins)是一个市场很大的抗虫抗生素,其前体阿弗米丁(avermectins)的产生菌种的发酵液中有8个以上的组分,其中只有B1a组分才是制备伊维菌素的原料。Ikeda等[8]经过近十年的努力,已将阿弗米丁的生物合成基因簇全部搞清,并经过诱变与DNA重组,获得了仅产阿弗米丁B2a单一组分和B1a、B2a组份的重组工程菌,这不仅大大提高了阿弗米丁有效组分的发酵效价,且给提取、精制、半合成等后处理工序带来了很大的便利。可以预见,随着对各种工业生产的微生物药物生物合成途径的深入了解以及基因重组技术的不断进展,应用基因工程方法定向构建高产菌株的成功实例将越来越多。在抗生素发酵过程中供氧往往是一个限制因素,充足的氧气供给是药物工业发酵稳定和提高产量,降低成本的关键。传统的解决方法如增加通气量等对设备要求高,能量消耗大。20XX0年代末在专性好氧菌透明颤(Vitreoscilla)中发现了血红蛋白(VHb),它能促进氧气扩散到细胞末端氧化酶上。于是人们想到了将其基因Vgb克隆到其它微生物中,以促进微生物在低氧条件下生长。1988年Khosla等[9]从Vitreoscilla中分离出Vgb基因并将之转入大肠杆菌(E·coli),提高了大肠杆菌在溶氧量低于5%时对氧的利用率。目前已用克隆表达VHb的方法提高了放线紫红素、头孢霉素C、红霉素等产生菌及青霉素酰化酶基因工程菌的产量[10]。血红蛋白基因工程的研究和应用,必将对抗生素工业和其它重组药物发酵工业的节能等带来美好的前景。作为半合成头孢菌素类抗生素重要原料的7-氨基头孢烷酸(7-ACA),目前国内外仍以化学裂解头孢菌素C的工艺路线为主。国内外已报道可用经由GL-7-ACA的二步法(化学/酶法或二步酶法)来生产7-ACA,与化学裂解法相比不仅收率提高,且能大大减少环境污染,简化生产工艺。但二步法中关键的GL-7-ACA酰化酶在假单胞菌中表达量低而且分离纯化困难,限制了这种方法的应用。通过将GL-7-ACA酰化酶基因转入大肠杆菌中表达恰好可以解决这一问题[11]。最近又报道可将编码2个酶的基因直接转入头孢菌素C的生产菌种中,使其在发酵时直接产生7-ACA。调节基因在药物的生物合成中也起着重要作用,增加调节基因的基因量能够大幅提高药物产量。Hopwood等将放线紫红素生物合成的一个调节基因actⅡ导入原产生菌,尽管基因的拷贝数仅增加了2倍,放线紫红素的产量却增加了30~40倍。某些抗生素生产菌的产量不高,是由于其自身对该抗生素的抗性不高。因此,利用高拷贝质粒的基因量效应,增加菌种对自身产生的抗生素的抗性,可能增加抗生素的产量。例如,将氨基糖苷-6-乙酰转移酶基因导入卡那霉素和新霉素产生菌,由于提高了对氨糖类抗生素的抗性,产量提高了2~6倍2.2.2基因治疗基因治疗是指由于某种基因缺陷引起的遗传病通过转基因技术而得到纠正。临床实践已经表明:基因治病已经变革了整个医学的预防和治疗领域。比如白痴病,用健康的基因更换或者矫正患者的有缺损的基因,就有可能根治这种疾病。现在已知的人类遗传病约有4000种,包括单基因缺陷和多基因的综合症。运用基因工程技术或基因打靶的手段,将病毒的基因杀灭,插入矫正基因,得以治疗、校正和预防遗传疾病的目的。目前,基因治疗已扩大到肿瘤、心血管系统疾病、神经系统疾病等的治疗[12]。人类也已成功实现了肾、心、肝、胰、肺等器官的移植,也有双器官和多器官的联合移植。基因治疗有两种途径:一是体细胞的基因治疗,一是生殖细胞的基因治疗。由于生殖细胞的基因治疗操作技术异常复杂,又涉及伦理缓行之理充足,故尚无人涉足[13]。基因工程是20XX纪生命科学中最伟大的成绩,开辟了生命科学的新纪元。经过几十年的发展,基因工程技术已成为一个巨大的朝阳产业,它可以超越动物、植物、微生物之间的界限,创造出新的生物类型。基因工程不仅在医学上应用广泛,而且也广泛应用在工业、农业、冶金、环保、资源、能源、畜牧渔业等领域,为人类的丰衣足食和健康长寿提供了持续的实用价值很高的产品,发展前景极为广阔。参考文献:[1]陈渝军,林晶.基因工程技术在医药卫生领域的应用及发展.药品评价,20XX,2(2):144-145.[2]童克中.基因及其表达.北京:科学出版社,20XX.[3]李尉民,乐宁,夏红民.转基因生物及其产品的风险与管理.生物技术通报.20XX(4)41-44.[4]朱宝泉.基因工程技术在医学工业中的应用及进展[J].中国医药工业志.1997.28(2):56-58.[5]方鹏.基因工程应用简述[J].辽宁师专学报.20XX.6(2):29-30.[6]周黎,柯传奎.基因工程药物研究现状与对策[J].生命科学仪器20XX.1:22.[7]MalmbergLH,HuWS,ShermanDH·JournalofBacteriology,1993,175(11):6916~6924·[8]HaruoIkeda,SatoshiOmura·JournalofAntibiotics,1995,48(7):549~562·[9]ChaitanKhosla,JamesEB·Nature,1988,331:633~635·[10]郭宏秋,杨胜利·微生物学通报,1996,23(4):227~230·[11]周煜,刘涤,胡之璧·药物生物技术,20XX,7(4):251~253·[12]路正兵,夏颖.基因工程在疾病防治及药物研制上的应用[J].安徽预防医学杂志.20XX.6(5):398-400.[13]王俊杰21世纪基因工程在肿瘤防治中的应用[J]20XX.6(6):62-67.分子生物学—谈基因工程技术如何应用于植物摘要:通过基因工程改良品种在未来的农业生产中日益显示出巨大潜力。尽管科学家们对转基因植物的争论仍在继续,但可以肯定的是,转基因植物作为一项新兴的生物技术的产物,在解决日益膨胀的地球人吃饭问题和在解决长期困惑人类发展的资源短缺、环境恶化、经济衰退三大难题中起着越来越重要的作用。本文综述了基因工程技术在植物中的应用,就转基因植物的技术、发展、安全性和发展前景作了探讨。关键词:基因工程技术;转基因植物;安全性;发展前景所谓转基因植物是指利用基因工程技术,在离体条件下对不同生物的DNA进行加工,并按照人们的意愿和适当的载体重新组合,再将重组DNA转入生物体或细胞内,并使其在生物体内或细胞内表达的植物。自1983年首次获得转基因植物以来,转基因技术发展十分迅速,成功的转基因植物已达60多种,在世界上批准进入田间试验的转基因植物已超过500例。1植物的转基因技术由于植物的体细胞具有全能性,即单个的细胞经过合适培养后可以生成完整的植株。将分离能够编码所需产物的DNA片段克隆到适当的载体DNA中形成重组DNA,利用细菌繁殖扩增重组DNA并将重组DNA中的目的基因导入所需的培育的植物细胞中,筛选出所需要的细胞,通过细胞的全能性将转基因植株大规模种植。其中外源基因导入植物细胞的方法可分为DNA直接转化和以载体为媒介的基因转化。基因的直接转移是通过物理化学法将外源基因转入受体植物细胞的技术。常用的方法有化学刺激法、脂质体法、显微注射法和基因枪法等。其原理是利用物理化学方法暂时改变膜通透性,使DNA进入细胞,并最终整合到植物基因组中。以载体为媒介的基因转化即使通过农杆菌或植物病毒介导感染受体植物将外源基因转入植物细胞的技术。目前,载体法主要包括土壤农杆菌Ti质粒、Ri质粒及植物DNA病毒等介导的遗传转化法。2转基因植物的筛选与检测通过转基因的方法将目的基因转入目的植物的细胞后,转化细胞与非转化细胞相比都只占少数,两者存在竞争,而转化细胞的竞争力通常比非转化细胞弱,因此必须对转化细胞进行筛选和检测。在构建重组DNA时,人们已经引入了标记基因以对转化子选择和鉴定。报告基因由于其表达产物易于检测,已广泛用于转基因植物中。根据报告基因编码特点,大致分为两类:抗性基因和编码催化人工底物产生颜色变化的酶基因或发光基因。根据检测的不同阶段区分,有DNA检测法、RNA检测法及蛋白质检测法。DNA检测法只能检测到外源基因是否已经整合到植物基因组中,而RNA检测法得到的结果可判定外源基因是否转录,蛋白质检测法则可检测出外源基因是否翻译。3改进转基因的技术随着植物转基因技术的创立和发展,许多具有重要经济价值的农作物获得了转基因植株,植物转基因技术成为植物育种的一个重要手段,但仍有许多问题阻碍了转基因技术在生产上的广泛的应用。将外源DNA导入植物细胞后,只有外源DNA在宿主细胞及其子代细胞中稳定整合和有效的表达,才能培育出具有新的遗传性状的转基因植物。大量研究表明外源基因在转基因植物中有的能正常表达,有的表达量很低,甚至不表达,而且在不同的植株个体之间也存在着明显差异。所以提高转基因的表达,减少转基因的失活是转基因技术的一个重要内容。提高外源基因表达水平的措施有:3.1农杆菌介导的遗传转化方法由于其产生的拷贝数相对较少,可以在一定程度上避免这个问题。3.2使用信号肽,每种植物蛋白质的作用空间位置都是不同的,蛋白质分子的定向运输需要特殊多肽信号的引导作用。3.3选择强启动子和诱导型启动子3.4使用强终止子常用的终止子时CaMV35S终止子和根瘤土壤杆菌T-DNA的胭脂氨基酸合成酶基因的nos终止子。3.5消除甲基化的影响在载体上加上去甲基化功能的序列以防止甲基化。3.6使用植物偏爱的密码子3.7使用MAR序列3.8使用增强子3.9对外源基因进行修饰和改造3.10以叶绿体作为转化受体3.11使用一些病毒编码蛋白3.12在有性生殖后代中筛选单拷贝植株4基因工程在农作物上的应用4.1抗虫转基因作物最早获得的转Bt(苏云金杆菌)毒素基因植物是烟草和番茄,随后Bt毒素基因相继被转化到许多其他农作物中,如棉花、水稻、玉米等,获得了一大批具良好抗虫性的转基因植物品种。4.2抗病毒作物植物病毒感染时一个严重的问题,它可导致农作物生长缓慢、产量降低和质量减退。转基因植物的成功使作物抗病毒成为可能并加速了作物抗病育种的研究进程。自1986年Powel-Abel首次将烟草花叶病毒(TMV)外壳蛋白(Cp)基因导入烟草,培育出抗TMV植株以来,已经将许多病毒成功的构建了多种抗病毒植株,近几年的研究结果表明病毒外壳蛋白在系统杂交保护中起着重要的作用,插入一段已克隆的CP基因可以延缓病毒的发展和阻止病毒在转基因植株中进一步传播。4.3抗细菌和真菌作物细菌和真菌病在全部植物病害中造成的损失最大,很多科学家都在尝试从植物的生物体内寻找抗病原菌的蛋白及其基因,并将其用于植物基因工程。自1980年,瑞典科学家首次从美国惜古比天蚕种成功分离了3种诱导型的杀菌肽进行了深入的研究。它们对很多种植物病原菌有较强的杀伤作用。现在的实验结果表明,杀菌肽作用于细胞的细胞膜,破坏膜的完整性,造成离子通道,最终导致细胞内含物泄露。目前,杀菌肽基因工程已经在烟草、马铃薯等植物上有了初步报道。4.4抗除草剂转基因作物人类自有农业起就一直跟杂草作斗争,它是农业生产中的大敌,但由于它具有较强的生态适应性和抗逆性,所以给杂草的防治带来了困难。在大量使用化学除草剂的同时往往会对作物造成一定的伤害。为此人们在研究抗除草剂基因,将该基因转入植物,在喷施除草剂杀死杂草时,不伤害作物。20XX80年代中期,抗除草剂基因被转入了作物体内,从而获得了抗除草剂的转基因大豆、棉花、玉米、油菜、小麦等。4.5抗非生物胁迫作物干旱时困扰农业生产的重要因素之一,它给农业生产带来巨大的损失,这种损失甚至是毁灭性的。CMO基因是合成乙酰-甜菜碱第一步反应关键酶的基因,具有很强的抗旱性。Rathinasabathi等奖烟草中的CMO基因导入水稻中,获得抗旱性较强的转基因水稻。可以相信在未来培育出的耐旱的新作物品种应该是转入多种共同作用的外源基因。5转基因植物的安全性..5.1转基因植物的优缺点关于转基因植物及其安全性问题,是近年来的热门话题,但目前国际上没有统一说法,争论不一。其主要优点:①增加食物供应,解决粮食短缺;②减少农药使用,避免环境污染;③降低生产成本,降低食物售价;④增加食物营养,提高附加价值;⑤增加食物种类,提升食物品质;⑥提高生产效率,带动相关产业发展。其主要缺点:①可能对蝴蝶等昆虫造成伤害;②可能影响周边植物的生长;③可能使昆虫或病菌在演化中增加抵抗力或产生新的物种,因此有可能会伤害作物。..5.2转基因食品的安全性和可接受性随着转基因技术的发展,转基因食品的安全性越来越受到人们的关注。转基因食品与传统食品相比,区别在于:首先它含有利用转基因技术导人的外源基因;其次可能存在外源基因在受体内的表达产物。由于这两种成分的不确定性以及由此引起的次级效应,对人类健康可能有潜在的危害。目前人tfx转基因食品生物的担忧基本上可以归纳为3类:(1)转基因食品里加入的新基因无意中对消费者造成的健康危害;(2)转基因作物中的新基因对食物链其他环节无意中造成的不良后果;(3)人为强化转基因作物的生存竞争性,对自然界生物多样性的影响。其中人们最为担心的是转基因食品对人体健康是否安全,转基因食品与常规食品比较有无不安全的成分。这就需要对其主要营养成分、微量营养成分、抗营养因子的变化、有无毒性物质、有无过敏性蛋白以及转入基因的稳定性和插入突变进行检测。另外是人们对..“基因逃逸”的担心。所谓..“基因逃逸”,就是指微生物之间可以通过转导、转化、接合进行基因转移。人们主要是担心转基因作物及基因食品的有害基因是否会逃逸到人体或环境中,加快抗药性问题。如野生植物种通过受粉可能会完成抗除草剂的基因改良,会变成..“超级杂草”,由此形成的具有非自然抗逆性的植物对那些以其为生的动物们来说,可能会导致生物链的断裂。6转基因植物的发展前景转基因植物在人类发展史上,是人类对自然的认识和改造的结果,必将对人类的生存带来重大影响。随着人们对遗传本质认识的深化和生物技术水平的不断提高,大量的转基因植物不断涌现。通过转基因技术来改良作物的品质是一个不可阻挡的趋势,因为现在有许多问题是无法通过常规育种来解决的,特别是耐旱、耐贫瘠等作物品种的培育。例如非洲的沙漠地区,如果按照现在的育种手段,它的粮食产量根本不可能满足基本生活保证,人们现在寄希望于通过转基因技术生产一些比较耐旱、耐贫瘠的作物,以解决因为土地可耕面积的减少而给人类带来的压力。另外,转基因技术可以改良作物的营养成分,现在非常知名的一个例子就是瑞士联邦技术研究所成功开发的金色大米,它是通过将胡萝卜素合成途径的关键基因转到水稻中去,生产出的大米是金黄色的,这种水稻含有VA的合成原料,在解决吃饭问题的同时有助于治疗因缺乏VA而导致的眼睛失明等疾病,这对于发展中国家非常重要。因此转基因技术具有广阔的发展前景。但是,在大力发展转基因食品的同时,应建立完善的转基因产品评价和监控体系。1993年,世界经济合作与开发组织发表了..“现代生物技术食品的安全评价——概念和原则”,提出了..“质量等同性概念”,其含义是..“当某个由转基因技术生产的新食品的各项主要特征(分子学特征、遗传形状、主要营养成分等)与现有食品大致相同,则认为该新食品的安全性也与现有食品大体等同。”我国政府也于1993年、1996年和2001年分别颁布了有关条例和规定,要求对转基因食品的试验、生产、应用等实行生产许可证和经营许可证制度,同时对违规试验、生产、应用、进出口转基因食品的机构和人员,规定了严厉的处罚措施。但如何维护消费者的知情权,对转基因食品实行标志制,如何加强对进口转基因食品的检验监管,保证我国的食品卫生安全等尚需进一步完善,加强研究。综上所述,基因工程技术作为一项新兴的生物技术,其发展趋势不可阻挡。但科学技术是把双刃剑的理论同样适合转基因植物。为此,我们应该适当借鉴国外经验,建立一套既符合中国国情,又与国际接轨,且科学合理的基因安全评价和监控体系,为日后我国转基因植物走向世界奠定基础。参考文献:(1)李立家肖庚富基因工程科学出版社20XX.8(2)李书国,陈辉,庄玉亭.基因工程在食品工业中的应用.粮油与油脂,20XX.2(3)夏焕章熊宗贵生物技术制药高等教育出版社20XX.3(4)谈家桢.基因工程.北京:农业出版社,1979...基因工程抗体研究进展及其临床应用摘要:基因工程抗体是继多克隆抗体和单克隆抗体之后的第三代抗体,近年来随着生物工程技术的发展,许多基因工程抗体陆续问世,本文详细介绍了基因工程抗体的研究进展,概述了基因工程抗体在临床方面的明显优势和应用潜力。关键词:基因工程抗体;研究进展;临床引用AdvancesinGeneticEngineeringResearchandClinicalApplicationofAntibodyStudentmajoringinProfessionalVeterinaryMedicineNameDongChuanJunTutorNameMinLingJiangAbstract:Geneticengineeringantibodyisthethirdgenerationantibodyafterpolyclonalantibodyandmonoclonalantibody.Inrecentyears,withthedevelopmentofbio-engineeringtechniques,manygeneticallyengineeredantibodieshavebeenpresentedtothepublic,andthisarticleelaboratesonresearchprogressofthegeneticengineeringantibody,anditsobviousadvantagesandpotentialsinclinicalapplication.Keywords:Geneticallyengineeredantibodies;Research;Clinicalapplication.转基因技术迅速发展,其应用和发展的领域日益夸大。但转基因技术的弊端日益凸现,引起众多关注的目光。就转基因技术本身而言,社会各界对它的态度各有异同。不同的国家不同的民族和不同的个体对转基因技术的态度大相径庭。如何看待转基因技术?如何去应用和发展转基因技术?这些都是我们亟待解决的问题。基因工程抗体介绍1.1基因工程简介基因工程抗体是借助DNA重组和蛋白质工程技术,在基因水平对免疫球蛋白分子进行切割、拼接、修饰和重新组装的一种新型抗体。所制备的抗体去除或减少了可引起副作用的无关结构,但保留天然抗体的特异性和主要生物学活性,并可赋予抗体分子以新的生物学活性的总称【1】。由于目前制备的抗体均为鼠源性临床应用时,对人是异种抗原,重复注射可使人产生抗鼠抗体,从而减弱或失去疗效,并增加了超敏反应的发生,因此,在80年代早期,人们开始利用基因工程制备抗体,以降低鼠源抗体的免疫原性及其功能[2]。目前多采用人抗体的部分氨基酸序列代替某些鼠源性抗体的序列,经修饰制备基因工程抗体,称为第三代抗体[3]。1.2基因工程抗体种类基因工程抗体主要包括嵌合抗体、人源化抗体、完全人源抗体、单链抗体、双特异性抗体等。1.2.1嵌合抗体嵌合抗体(chimericatibody)是最早制备成功的基因工程抗体。它是由鼠源性抗体的V区基因与人抗体的C区基因拼接为嵌合基因,然后插入载体,转染骨髓瘤组织表达的抗体分子【4】。因其减少了鼠源成分,从而降低了鼠源性抗体引起的不良反应,并有助于提高疗效。1.2.2人源性抗体是将人抗体的CDR代之以鼠源性单克隆抗体的CDR,由此形成的抗体,鼠源性只占极少,称为人源化抗体。1.2.3完全人源化抗体采用基因敲除术将小鼠Ig基因敲除,代之以人Ig基因,然后用Ag免疫小鼠,再经杂交瘤技术即可产生大量完全人源化抗体。1.2.4单链抗体是将Ig的H链和L链的V区基因相连,转染大肠杆菌表达的抗体分子,又称单链FV(singlechainfragmentofvariableregion,sFv)。SFv穿透力强,易于进入局部组织发挥作用。1.2.5双特异性抗体将识别效应细胞的抗体和识别靶细胞的抗体联结在一起,制成双功能性抗体,称为双特异性抗体。如由识别肿瘤抗原的抗体和识别细胞毒性免疫效应细胞(CTL细胞、NK细胞、LAK细胞)表面分子的抗体(CD3抗体或CD16抗体)制成的双特异性抗体,有利于免疫效应细胞发挥抗肿瘤作用。基因工程抗体的研究进展2.1抗体工程的发展最近,美FD强调:目前在临床试验中基因工程抗体约占生物制剂的30%。重组抗体的体积越来越小,或被重新构建成多价分子,或与其它分子相融合,如放射性核素、毒素、酶、脂质体和病毒的药剂设计成为可能。【5】。重组技术的出现使筛选、人源化、抗体的生产得到革新,并取代杂交瘤技术,从而使以抗体为基础图1:抗体的发展2.2目前基因工程抗体制备的主要方法2.2.1人鼠嵌合抗体主要是利用基因重组技术,把鼠抗体的重轻链可变区部分与人抗体重轻链恒定区的进行重组,减少鼠源结构,增加人源结构,而保持抗体与原抗原的特异性结合【6】。1.首先把小鼠编码Ig重轻链的基因剔除。2.制备表达人的Ig重轻链的转基因小鼠。3.上二种小鼠回交,获得只表达人Ig重轻链的基因的小鼠。当用抗原免疫后,小鼠可产生完全人源抗体。2.2.2噬菌体抗体库技术1.人的Ig重轻链可变区基因片段展示在噬菌体表面,组成抗体库。2.过噬菌体把抗体的表型和基因型相偶联,易进行分子克隆和基因操作。3.抗体库的来源影响筛选结果(免疫和正常人)。4.高通量筛选与抗原结合的抗体,但亲和力低。2.2.3用人的骨髓瘤细胞直接制备全人抗体由于骨髓瘤细胞稳定性高和融合率高,所以要建立好的人骨髓瘤细胞。2.2.4B细胞永生化技术用EB病毒将人淋巴细胞永生化可产生分泌抗体的B细胞克隆【7】。这一技术较为成熟,但是存在抗体分泌不稳定的缺点,限制了其应用。或直接分离分泌抗体的B细胞,用PCR获得重轻连,构建全人抗体。2.3抗体药物发展现状1.FDA已批准上市的抗体药物。2.SFDA(中国)已批准上市及临床研究的的抗体药物。2.4工程抗体的未来发展与展望2.4.1单克隆抗体的市场需求图2:单抗体市场的预测与分析3.基因工程抗体药物的应用随着生物工程技术的发展,许多基因工程抗体陆续问世,并在医学领域的许多方面都具应用潜力,如病毒感染、肿瘤、自身免疫性疾病、同种异体移植物注射、哮喘、中风和青光眼治疗,尤其在诊断和治疗肿瘤性疾病及抗感染方面优势明显。3.1基因工程抗体药物的临床应用3.1.1在肿瘤性疾病诊疗方面的应用放射性标记抗体在肿瘤影像和治疗中很重要,并可有效进行药代动力学评估.以标记抗体注入人体内显示肿瘤部位抗原与抗体结合的放射浓集称放射免疫显像,由于基因工程抗体如单链抗体、Fab片段等分子量小、能很快清除、组织穿透力强,所以更适于放射免疫显像【8】。恶性肿瘤的导向治疗,是通过重组技术将抗肿瘤相关抗原的抗体与多种分子融合,这些分子在抗体结合靶分子后可提供重要辅助功能.这些分子包括:放射性核素、细胞毒药物、毒素、小肽、蛋白、酶和用于基因治疗的病毒.对肿瘤治疗来说,设计的双特异性抗体可有效针对低水平的肿瘤相关抗原,并将细胞毒物质输送到肿瘤细胞.此外,抗体还可与携带药物的脂质体、各种PEG偶联,从而增强体内运输和药代动力学。作为免疫脂质体,转铁蛋白受体抗体可使药物通过血脑屏障到达大脑.抗体酶复合物作为前体药物也被用于基础肿瘤治疗。3.1.2基因工程抗体的抗感染作用预防和治疗感染性疾病常用的药物是疫苗和抗生素,但对于一些尚无有效预防及治疗手段的感染性疾病如SARS、AIDS等,抗体治疗可做为首选方案。如在治疗AIDS方面,利用抗体工程技术已成功地制备出HIV病毒整合菌的单链抗体ScAb2219,对HIV病毒感染的早期和晚期具有有效的抑制作用,并可望成为S基因治疗的有效手段。呼吸道合胞病毒(RSV)易引起婴儿呼吸道疾病,如细支气管炎和肺炎,并可引起严重的并发症,目前已有人源化单克隆抗体Palivizumab经美国FDA批准上市,临床实验证明无毒、副反应,并可显著降低婴儿的住院率。我国率先建立了针对SARS的基因工程抗体库,这对于SARS的预防、诊断和治疗都将起到重要作用和深远影响。对于中和其它病原分子,FDA已批准Fab单体分子作为抗蛇毒药物;scFv片段和寡克隆复合物作为抗细菌毒素药物。3.1.3细胞内抗体随着细胞信号转导和抗体工程技术的发展,诞生了细胞内抗体技术。这项技术是指在细胞内表达并被定位于亚细胞区室如胞核、胞浆或某些细胞器,与特定的靶分子作用从而发挥生物学功能的一类新的工程抗体。最典型的是scFv,被称为内抗体。胞内抗体技术主要应用在抑制病毒复制特别是HIV-1复制、肿瘤基因治疗方面,现已逐渐拓展到中枢神经系统疾病、移植排斥和自身免疫性疾病等领域。体外培养来源于无关供体的角质形成细胞同种移植物用于严重的烧伤病人的治疗,往往会引起排斥反应,而MHCI类分子是引起移植排斥的重要抗原。Mhashikar等用编码抗MHCI单链抗体的腺病毒转染角质形成细胞,结果显示明显降低了MHCI的表达,细胞内抗体介导的表型敲除是否有利于同种移植物的存活还需要进一步研究。3.1.4用于未来诊断的生物传感器和微矩阵技术生物传感器和微阵列技术在不久以后将有可能成为主要的体外诊断技术.对于大量诊断试剂盒,抗体有高敏感性和高特异性.从最初的玻璃界面到现在的多种蛋白亲和界面,用于诊断的抗体微矩阵界面不断发展.随着体外机械人的出现,这一技术将进一步发展,并用于微生物污染、寄生虫和生物病原体的检测。3.2基因工程抗体药物的应用领域1.肿瘤导向治疗;2.哮喘、银屑病、类风湿性关节炎、红斑狼疮、急性心梗、脓毒症、多发性硬化症及其他自身免疫性疾病;3.心脑血管疾病;4.感染性疾病;5.“生物导弹”4.基因工程技术的发展方向针对基因工程抗体药物的应用,明确基因工程技术的发展方向,从而让基因工程抗体对我们更有利[9]。1.开发针对神经系统、肿瘤、心血管系统、艾滋病及免疫缺陷等重大疾病的多肽、蛋白质和核酸等新生物技术产品;2.选择一批市场前景好的生物技术产品及疫苗、诊断用单克隆抗体,开发重点是乙肝基因疫苗与单克隆抗体诊断试剂等;3.开发靶向药物主要是开发抗肿瘤药物。目前治疗肿瘤药物确实存在一个所谓“敌我不分”的问题。在杀死癌细胞的同时,也杀死正常细胞。导向治疗就是针对这个问题提出来。所谓导向治疗就是利用抗体寻找靶标,如导弹的导航器,把药物准确引入病灶,而不伤及其他组织和细胞;4.人源化的单克隆抗体的研究开发。抗体可以对抗各种病原体,亦可作为导向器,但目前的单克隆抗体,多为鼠源抗体,其本身也被异种生物体视为抗原,当被注入人体后会诱导产生抗体或激发免疫反应。目前国外已研究噬菌体抗体技术,嵌合抗体技术,基因工程抗体技术以解决人源化抗体问题;5.血液替代品的研究与开发仍然占重要地位。血液制品是采用大批混合的人体血浆制成的,由于人血难免被各种病原体所污染,如艾滋病病毒及乙肝病毒等,通过输血而使接受输血的人感染艾滋病或乙型肝炎的案例时有发生,因此利用基因工程开发血液替代品引人注目。基因工程抗体的进展已使抗体制备技术进入了一个全新时代,尤其药物抗体库的进展,解决了人源抗体的研制,促进了各种性能优良抗体以及具有多种功能的抗体融合蛋白的开发,可以预见基因工程抗体的研制正在进入一个新的高峰。但是抗体的亲和力减弱,与完整抗体结构相比,功能明显就会降低。人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确的预测。所以我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因抗体的安全性【10】。致谢:非常感谢闵令江老师在我大学的学习阶段教给自己基因工程这门学科。我从中学到了很多知识,认识了关于基因工程方面的一些问题,使自己从一无所知到现在基本认识了这门学科,在此我向老师表示我诚挚的谢意,感谢老师的诚挚教导。【参考文献】[1]楼士林,杨盛昌,龙敏南,等。基因工程[M]。北京:科学出版社,20XX。[2]李庆军,董艳桐,施冰。植物抗虫基因的研究进展[J]。林业科技,20XX,27(2):2226。[3]AviviI,RobinsonS,GoldstoneA.C1inicaluseofrituximabinhaematologica1ma1ignancies[J].Br.J.Cancer20XX,89:1389-1394.[4]CaiX.,eta1.Proc.Nat1[J].Acad.Sci.,USA1995,92:6537-6541.[5]Schi1lbergS.,FischerR.,EmansN。Molecularfarmingofrecombinantant[6ibodiesinplants[J].Cel1Mo1.LifeSci.20XX,60:433-445.]BouquinT.,ThomsenM.,Nie1senL.K.,eta1.Humananti—rhesusDIgG1antibodyproducedintransgenicplants[J].TransgenicRes.20XX,11:115-122.[7]WisemanG.A.,LeighB.,ErwinW.D.,eta1.RadiationdosimetryresultsforZevalinradioimmunotherapyofritux。imab。refractorynon—Hodgkinlymphoma.Cancer20XX,94:1349—1357.[8]沈孝宇。转基因之争[M]。北京:化学工业出版社,20XX。[9]李彪;鼠-人嵌合抗体的研制及应用[J];国外医学。放射医学核医学分册;1996年04期。[10]黄华梁;基因工程抗体的研究[J];中国肿瘤生物治疗杂志。基因工程在现代社会中的应用与前景在基因水平上,采用与工程设计十分类似的方法,按照人类的需要进行设计,然后按设计方案创建出具有某种新的性状的生物新品系,并能使之稳定地遗传给后代,这就是基因工程。基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,即“目的基因”。被称为“分子剪刀”的“限制性转切酶”可以在DNA分子上找到特定的“切点”,然后将认准的双链交错切断。自70年代以来,人们已找到400多种形形色色的“分子剪刀”。二是将目的基因与质粒或病毒DNA连接成重组DNA。在用同一种“分子剪刀”剪切的两种DNA碎片中加上“分子针线”——“DNA连接酶”,就可以把两种DNA片段重新连接起来。三是把重组DNA引入某种细胞。把“拼接”好的DNA分子运送到受体细胞中去,必须寻找一种分子小、能自由进出细胞,而且在装载了外来的DNA片段后仍能照样复制的运载体。理想的运载体是质粒,因为质粒能自由进出细菌细胞。四是把目的基因能表达的受体细胞挑选出来。目的基因的导入过程是肉眼看不到的。因此,要知道导入是否成功,事先应找到特定的标志。例如我们用一种经过改造的抗四环素质粒PSC100作载体,将一种基因移入自身无抗性的大肠杆菌时,如果基因移入后大肠杆菌不能被四环素杀死,就说明转入获得成功了。科学家曾预言,21世纪是基因工程的世纪。基因工程对人类来说,作用是不可估量的,意义是深远的。随着人类对基因研究的不断深入,发现许多疾病是由于基因结构与功能发生改变所引起的。科学家将不仅能发现有缺陷的基因,而且还能掌握如何进行对基因诊断、修复、治疗和预防,这是生物技术发展的前沿。这项成果将给人类的健康和生活带来不可估量的利益。所谓基因治疗是指用基因工程的技术方法,将正常的基因转如病患者的细胞中,以代病变基因,从而表达所缺乏的产物,或者通过关闭或降低异常表达的基因等途径,达到治疗某些遗传病的目的。目前,已发现的遗传病有6500多种,其中由单基因缺陷引起的就有约3000多种。因此,遗传病是基因治疗的主要对象。基因治疗的最新进展是即将用基因枪技术于基因治疗。其方法是将特定的DNA用改进的基因枪技术导入小鼠的肌肉、肝脏、脾、肠道和皮肤获得成功的表达。这一成功预示着人们未来可能利用基因枪传送药物到人体内的特定部位,以取代传统的接种疫苗,并用基因枪技术来治疗遗传病。目前,科学家们正在研究的是胎儿基因疗法。如果现在的实验疗效得到进一步确证的话,就有可能将胎儿基因疗法扩大到其它遗传病,以防止出生患遗传病症的新生儿,从而从根本上提高后代的健康水平。加快农作物新品种的培育科学家们在利用基因工程技术改良农作物方面已取得重大进展,一场新的绿色革命近在眼前。这场新的绿色革命的一个显著特点就是生物技术、农业、食品和医药行业将融合到一起。基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。基因工程自20XX70年代兴起之后,经过二十多年的发展历程,取得了惊人的成绩,基因治疗特别是近十年来,基因工程的发展更是突飞猛进。基因转移、基因扩增等技术的应用不仅使生命科学的研究发生了前所未有的变化,而且在实际应用领域——医药卫生、农牧业、食品工业、环境保护等方面也展示出美好的应用前景。基因工程与医药卫生目前,基因工程在医药卫生领域的应用非常广泛,主要包括以下方面:1.基因工程药品的生产:许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。⑴基因工程胰岛素胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。将合成的胰岛素基因导入大肠杆菌,每20XXL培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%!⑵基因工程干扰素干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。基因工程人干扰素α-2b(安达芬)是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。⑶其它基因工程药物人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。基因工程药品是制药工业上的重大突破。目前用基因诊断方法已经能够检测出肠道病毒、单纯疱疹病毒等许多种病毒。基因工程与农牧业、食品工业基因工程在农牧业生产上的应用主要是培育高产、优质或具有特殊用途的动植物新品种。基因工程在农业方面的应用主要表现在两个方面。首先,是通过基因工程技术获得高产、稳产和具有优良品质的农作物。例如,用基因工程的方法可以改善粮食作物的蛋白质含量。其次,是用基因工程的方法培育出具有各种抗逆性的作物新品种。自然界中细菌的种类是非常多的,在细菌身上几乎可以找到植物所需要的各种抗性,如抗虫、抗病毒、抗除草剂、抗盐碱、抗干旱、抗高温等。如果将这些抗性基因转移到作物体内,将从根本上改变作物的特性。基因工程在畜牧养殖业上的应用也具有广阔的前景,科学家将某些特定基因与病毒DNA构成重组DNA,然后通过感染或显微注射技术①将重组DNA转移到动物受精卵中。由这种受精卵发育成的动物可以获得人们所需要的各种优良品质,如具有抗病能力、高产仔率、高产奶率和高质量的皮毛等。在工业上,由于用微生物进行发酵生产要比在大田中进行农牧业生产具有许多优越性,因而它已成为农牧业发展的一个远景方向。而要实现这一目标,基因工程将是最有效的手段。例如,有人设想并正在试验将抗生素生产菌放线菌或霉菌的有关遗传基因转移至发酵时间更短、更易于培养的细菌细胞中;将动物或人产胰岛素的遗传基因转移至酵母或细菌的细胞中;将家蚕产丝蛋白的基因引入细菌细胞中;把人或动物产抗体、干扰素、激素或白细胞介素(interleukin)等的基因转移至细菌细胞中;把不同病毒的表面抗原基因转移到细菌细胞中以生产各种疫苗;用基因工程手段提高各种氨基酸发酵菌的产量;构建分解纤维素或木质素以生产重要代谢产物的工程菌;基因工程还可以为人类开辟新的食物来源。基因工程与环境保护基因工程的方法可以用于环境监测基因工程还可以用于被污染环境的净化。造成环境污染的农药,并试图通过基因工程的方法回收和利用工业废物。凡此种种,都是一些可望取得成功和发展前景十分光明的研究课题。例如,目前用100000克胰脏只能提取3~4g胰岛素,而用“工程菌”进行发酵生产,则只要用几升发酵液就可取得同样数量的产品。1978年,美国有两个实验室合作,使E.coli产生大白鼠胰岛素的研究已获成功。接着,又报道了通过基因工程使E.coli合成人胰岛素实验成功的消息。他们在实验室中曾将人胰岛素A、B两链的人工合成基因分别组合到E.coli的不同质粒上,然后再转移至菌体内。这种重组质粒可在E.coli细胞内进行正常的复制和表达,从而使带有A、B链基因的“工程菌”菌株分别产生人胰岛素的A、B链,然后再用人为的方法,在体外通过二硫键使这两条链连接成有活性的人胰岛素。另外,在1977年,国外已利用基因工程技术,使E.coli生产出一种名为生长激素释放因子“SRIH”的动物激素(一种十四肽,能抑制其他激素的释放和治疗糖尿病等),它原来要从羊的脑下垂体中提取,宰50万头羊也只能提取5mg的产品,而现在只要用10L发酵液就可获得同样的产量。近年来,应用遗传工程获得这类产品的例子正与日俱增,尤其是多肽类物质,如脑啡肽(大脑中的镇痛物质)、卵清蛋白(即“OV”,389肽)、干扰素(用于治疗病毒性感染)、胸腺素α-1(有免疫援助因子的作用,可治疗癌症)、乙型肝炎疫苗和口蹄疫病毒疫苗等。我国学者也急起直追,在脑啡肽、α-干扰素、γ-干扰素、人生长激素、乙型肝炎疫苗、含乙肝表面抗原基因的牛痘病毒株以及青霉素酰化酶等的基因工程研究中,取得了一系列令人鼓舞的成果。(2)基因工程在农业上的应用基因工程在农业上应用的领域也十分广阔。有人估计,到本世纪末,每年上市的植物基因工程产品的价值,相当于医药产品的十倍。几个主要的应用领域包括:①将固氮菌的固氮基因转移到生长在重要作物的根际微生物或致瘤微生物中去,或是干脆将它引入到这类作物的细胞中,以获得能独立固氮的新型作物品种。根据估算,利用前一方法,其研究经费仅及通过常规方法发展氮肥工业以达到同样效果的二百分之一至二千分之一;而后一途径则更省事,其成本还不到上述的二千分之一;②将木质素分解酶的基因或纤维素分解酶的基因重组到酵母菌内,使酵母菌能充分利用稻草、木屑等地球上贮量极大并可永续利用的廉价原料来直接生产酒精,并可望为人类开辟一个取之不尽的新能源和化工原料来源;③改良和培育农作物和家畜、家禽新品种,包括提高光合作用效率以及各种抗性基因工程(植物的抗盐、抗旱、抗病基因以及鱼的抗冻蛋白基因)等。基因工程的前景从70年代起逐步建立起来的基因工程技术,使基因或一些具有特殊功能的DNA片段的分离变得十分容易。这些基因或特殊DNA片段的一级结构(即它们的核苷酸序列)的测定也是十分容易的,由基因的核苷酸序列去推测蛋白质的氨基酸残基的序列也变得轻易而举。利用计算机技术可以很容易的对推测出来的蛋白质进行高级结构的分析,可以对来自不同生物种类的基因序列进行同源性分析。所有这些方法或技术的广泛使用,不仅大大地推动了分子生物学的迅猛发展,而且也大大推动了生命科学各个分支领域的迅速发展。因此,基因工程技术的第一个重要应用领域就是大大的推动了科学理论研究的发展。由于基因工程是从遗传物质基础上对原有的生物(常常称之为受体生物)进行改造,经过改造的生物就会按照研究者的意愿获得某种(些)新的基因,从而使该生物获得某些新的遗传性状。这种性状可以用人的肉眼直接观察到,也可能是通过某些反应或仪器间接观察到。这种受体生物可能是微生物,植物或动物,因而它会涉及到许多生产行业。基因工程技术几乎涉及到人类的生存所必需的各个行业。比如将一个具有杀虫效果的基因转移到棉花、水稻等农作物种中,这些转基因作物就有了抗虫能力,因此基因工程被应用到农业领域;要是把抗虫基因转移到杨树、松树等树木中,基因工程就被应用到林业领域;要是把生物激素基因转移到支物中去,这就与渔业和畜牧业有关了;如果利用微生物或动物细胞来生产多肽药物,那么基因工程就可以应用到医学领域。总之一句话,基因工程应用范围将是十分广泛的第三篇:基因工程论文学号:13054107基因工程结课论文靶向MRP1基因pRNAT-H1.1/shuttle-RFP重组质粒表达载体构建院(系)名称:理学院专业名称:生物科学学生姓名:姜己玉所在班级:13-1目录摘要2第一章绪论31..1RNAi的研究进展31.1.1RNAi的分子作用机制31.1.2RNAi的特点31.1.3siRNA简介31.1.4siRNA的设计原则31.2用于RNAi的载体41.2.1载体的选择41.2.2质粒人工构建的目的41.3MRP1的研究进展4第二章实验材料与方法52.1实验材料52.1.1宿主菌52.1.3载体通用引物52.1.5主要仪器52.2试验方法52.2.1shRNA的设计与退火52.2.2合成干涉片段的退火62.2.3重组载体的构建62.2.4菌落PCR初步筛选阳性重组子72.2.5测序鉴定重组载体7第三章结果与分析83.1质粒经HindⅢ和BamHI双酶切后胶回收结果83.1.1质粒经HindⅢ和BamHI双酶切后结果83.1.2目的片段的回收83.2重组质粒的菌落PCR83.3重组质粒大量提取83.4重组质粒测序结果8参考文献9摘要癌症严重威胁着人类的健康,其发病率呈上升趋势。化疗作为其常规临床治疗手段,在癌症治疗中具有手术和放射治疗不能替代的作用。肿瘤细胞的多药耐药性(multidrugresistance,MDR)是导致肿瘤细胞化疗失败的主要原因。肿瘤细胞产生多药耐药的原因较为复杂,多药耐药相关蛋白1(MultidrugResistance-associatedProtein1,MRP1)的过度表达是导致其产生多药耐药的主要原因之一。RNA干扰(RNAinterference,RNAi)是近年来发现的能快速、高效、特异的沉默目的基因表达的技术,如能通过RNAi技术沉默MDR1基因,逆转肿瘤细胞的多药耐药性将为改善癌症病人的化疗效果奠定基础。目的:本课题选用pRNAT-H1.1/shuttle-RFP表达穿梭载体。构建针对mrp1mRNA的RNA干扰表达载体。方法:将预先根据MRP1基因序列设计合成的编码siRNA的cDNA序列与pRNAT-H1.1/shuttle-RFP质粒载体连接,构建靶向mrp1siRNA重组质粒。将重组质粒转化E.coliDH5α后大量提取重组质粒,经菌落PCR和DNA测序分析检测重组载体构建结果。结果:成功构建靶向MRP1基因pRNAT-H1.1/shuttle-RFP重组质粒表达载体。为下一步抑制mrp1基因在肿瘤细胞中的表达奠定基础。关键词:RNA干扰;MRP1;pRNAT-H1.1/shuttle-RFP质粒;穿梭载体第1章绪论1.1RNAi的研究进展RNA干扰(RNAinterference,RNAi)是由双链RNA分子介导的序列特异性转录后基因沉默过程,为一种双链RNA分子在mRNA水平上关闭相关基因表达的过程,是一项新兴的基因阻断技术。RNAi有望成为分析人类基因组功能的有力工具,在肿瘤病因、免疫机制及治疗等方面的研究上有广阔的发展前景。1.1.1RNAi的分子作用机制RNAi的作用机制在众多学者的努力研究下日渐明朗。不同生物体内的RNA干扰作用机制也各有不同,但是主要可以分为两种类型:特异效应作用机制与非特异效应作用机制。特异性效应一般发生在短双链RNA(21~23nt)上,非特异性效应发生于长双链RNA(30nt以上)。1.1.2RNAi的特点RNAi具有高效性,也就是说与细胞内的mRNA的量相比,注入细胞内的siRNA的量要少得多。但由于循环放大机制的存在,仍可以有效地阻断目的基因的表达;同时,RNAi也具有高特异性,小干扰RNA由dsRNA降解得到的,除在序列识别中不起主要作用的正义链3′端的两个碱基以外,其余碱基均为必需。1.1.3siRNA简介RNA干扰作用是通过siRNA(smallinterferingRNA,siRNA)这类小RNA分子作为较稳定的中间介质实现的。通过对植物的研究证明,双链RNA复合体降解为35nt左右的小RNA分子后通过序列互补与mRNA结合,进而降解mRNA。1.1.4siRNA的设计原则RNAi作用的成功与否,关键在于siRNA序列的结构,不同结构的siRNA序列沉默基因的效率差别很大,20XX年,ElbashirSM等[应用化学合成法合成了siRNA,并发现可以诱导哺乳动物发生RNAi,他们进而据此提出了siRNA设计方法:1)从起始密码下游50~100nt开始搜索siRNA以避免出现于5′或3′端的UTRs的蛋白结合位点,;2)搜索5′AA(N19)UU序列,如果没有相应序列,可以选择5′AA(N21)或5′NA(N21);3)G/C含量在32%~79%之间[16];4)要确定siRNA对靶基因的特异性,可以利用Blast软件在基因组中进行比对,;5)设置在基因组中无对应序列的siRNA的对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论