八年级数学动点问题_第1页
八年级数学动点问题_第2页
八年级数学动点问题_第3页
八年级数学动点问题_第4页
八年级数学动点问题_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级数学动点问题

1.(2012•常德)已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连接DP,作CN⊥DP于点M,且交直线AB于点N,连接OP,ON.(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2)(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.

解答:(1)证明:如图1,∵四边形ABCD为正方形,∴OC=OB,DC=BC,∠DCB=∠CBA=90°,∠OCB=∠OBA=45°,∠DOC=90°,DC∥AB,∵DP⊥CN,∴∠CMD=∠DOC=90°,∴∠BCN+∠CPD=90°,∠PCN+∠DCN=90°,∴∠CPD=∠CNB,∵DC∥AB,∴∠DCN=∠CNB=∠CPD,∵在△DCP和△CBN中,∴△DCP≌△CBN(AAS),∴CP=BN,∵在△OBN和△OCP中,∴△OBN≌△OCP(SAS),∴ON=OP,∠BON=∠COP,∴∠BON+∠BOP=∠COP+∠BOP,即∠NOP=∠BOC=90°,∴ON⊥OP,即ON=OP,ON⊥OP.

(2)解:∵AB=4,四边形ABCD是正方形,∴O到BC边的距离是2,图1中,S四边形OPBN=S△OBN+S△BOP,2.已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)

解答:(1)解:过点B作BC⊥y轴于点C,∵A(0,2),△AOB为等边三角形,∴AB=OB=2,∠BAO=60°,

(2)证明:当点P在x轴上运动(P不与O重合)时,不失一般性,∵∠PAQ=∠OAB=60°,∴∠PAO=∠QAB,在△APO和△AQB中,

∴△APO≌△AQB(SAS),∴∠ABQ=∠AOP=90°总成立,∴当点P在x轴上运动(P不与O重合)时,∠ABQ为定值90°;

(3)解:由(2)可知,点Q总在过点B且与AB垂直的直线上,可见AO与BQ不平行.①当点P在x轴负半轴上时,点Q在点B的下方,此时,若AB∥OQ,四边形AOQB即是梯形,当AB∥OQ时,∠BQO=90°,∠BOQ=∠ABO=60°.

②当点P在x轴正半轴上时,点Q在B的上方,此时,若AQ∥OB,四边形AOBQ即是梯形,当AQ∥OB时,∠ABQ=90°,∠QAB=∠ABO=60°.5.如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.解答:解:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.6.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立���写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.解答:解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.

(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.

(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.7、如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,判断并说明以A、D、F、E为顶点的四边形是怎样特殊的四边形?(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,只写出结果即可.不用证明.

解答:解:(1)AE=AD.理由如下:∵AB⊥ON,AC⊥OM,∴∠AED=90°﹣∠MOP,∠ADE=∠ODB=90°﹣∠PON,而∠MOP=∠NOP,∴∠AED=∠ADE.∴AD=AE.(2)菱形.理由:连接DF、EF,∵点F与点A关于直线OP对称,E、D在OP上,∴AE=FE,AD=FD.由(1)得AE=AD,∴AE=FE=AD=FD.∴四边形ADFE是菱形;(3)OC=AC+AD.理由:∵四边形ADFE是菱形,∴∠AEO=∠FEO,∵∠AOE=∠FOE,∴∠EFO=∠EAO,∵AC⊥OM,OP平分∠MON,AE=EF,∴EF⊥OC,∴∠EFO=90°,∴AE=EF=AD,OA=OF,∵∠MON=45°,∴∠ACO=∠AOC=45°,∴OA=AC,∠FEC=∠FCE,∴EF=CF,∴CF=AE,∴OC=OF+FC=OA+AE=AC+AD.

8.如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:PE=PF;(2)当点P在边AC上运动时,四边形AECF可能是矩形吗?说明理由;(3)若在AC边上存在点P,使四边形AECF是正方形,且

.求此时∠BAC的大小.

解答:(1)证明:∵CE平分∠BCA,∴∠BCE=∠ECP,又∵MN∥BC,∴∠BCE=∠CEP,∴∠ECP=∠CEP,∴PE=PC;同理PF=PC,∴PE=PF;

(2)解:当点P运动到AC边中点时,四边形AECF是矩形.理由如下:由(1)可知PE=PF,∵P是AC中点,∴AP=PC,∴四边形AECF是平行四边形.∵CE、CF分别平分∠BCA、∠ACD,且∠BCA+∠ACD=180°,∴平行四边形AECF是矩形;

(3)解:若四边形AECF是正方形,则AC⊥EF,AC=2AP.∵EF∥BC,∴AC⊥BC,∴△ABC是直角三角形,且∠ACB=90°,∴∠BAC=30°.9.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.

解答:解:(1)y=MP+MQ=2t;

(2)当BP=1时,有两种情形:

∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面积为.②若点P从点B向点M运动,由题意得t=5.PQ=BM+MQ﹣BP=8,PC=7.设PE与AD交于点F,QE与AD或AD的延长线交于点G,过点P作PH⊥AD于点H,则HP=

.在Rt△HPF中,∠HPF=30°,∴HF=3,PF=6.∴FG=FE=2.又∵FD=2,∴点G与点D重合,如图2.此时△EPQ与梯形ABCD的重叠部分就是梯形FPCG,其面积为

(3)能,此时,4≤t≤5.过程如下:如图,当t=4时,P点与B点重合,Q点运动到C点,此时被覆盖线段的长度达到最大值,∵△PEQ为等边三角形,∴∠EPC=60°,∴∠APE=30°,∵

∴AF=3,BF=6,∴EF=FG=2,∴GD=6﹣2﹣3=1,所以Q向右还可运动1秒,FG的长度不变,∴4≤t≤5.

10.(正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E.①求证:DF=EF;②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论.(所写结论均不必证明)解答:解:(1)如图2,延长FP交AB于点Q,①∵AC是正方形ABCD对角线,∴∠QAP=∠APQ=45°,∴AQ=PQ,∵AB=QF,∴BQ=PF,∵PE⊥PB,∴∠QPB+∠FPE=90°,∵∠QBP+∠QPB=90°,∴∠QBP=∠FPE,∵∠BQP=∠PFE=90°,∴△BQP≌△PFE,∴QP=EF,∵AQ=DF,∴DF=EF;②如图2,过点P作PG⊥AD.∵PF⊥CD,∠PCF=∠PAG=45°,∴△PCF和△PAG均为等腰直角三角形,∵四边形DFPG为矩形,

(2)结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA﹣PC=CE.如图3:①∵PB⊥PE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论