版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等价无穷小量的替换法求极限樊宝恒(西北师范大学数学与统计学学院甘肃兰州730070)摘要:讨论了等价无穷小量以及等价无穷小量替换法求极限以及在运算中互相替换时要注意的一些问题.Abstract:SomeproblemsarediscussedaswellastheEquivalentInfinitesimalSubstitutionofEquivalenceInfinitesimalMethodforlimitandreplaceeachotherinoperationshouldpayattentionto.关键词:无穷小量;无穷大量;等价无穷小量;极限Keywords:infinitesimal;infinity;l;infiniteproduct;limit一等价无穷小量的定义设f在某内有定义,若则称f为当时的无穷小量设当时,f于g均为无穷小量若则称f于g是当时的等价无穷小量。记作二等价无穷小在求函数极限中的应用求函数的极限技巧很强,可利用无穷小等价的关系,简化了求某些型的极限的计算引理设函数(x),(x)满足下列条件:在a的某个去心邻域内均有非零导数(1)limf(x)=0,;(2)则,(3)当f(x),>0时,=1证明由洛比达法则;;=,证毕原式=很显然,这个题目直接用洛比达法则求解太繁,我们考虑函数中使用等价无穷小进行化简。注意到:当时,有原极限=可见,对一些无法直接使用等价无穷小的极限式直接使用洛比达法则,会造成计算量大而且通过对函数式的构造变换,再使用等价无穷小,就很容易求得答案了。数列极限的常见求法(1)极限的四则运算法则若{}与{}为收敛数列,则{},{},{}也都是收敛数列,其有例4求解由得(2)利用重要极限求数列的极限两个重极限分别为例5求解(3)单调有界数列法这一方法是利用极限理论基本定理:单调有界数列必有极限,其方法为:(1)判定数列是单调有界的,从而可设其极限为A。(2)建立数列相邻两项之间的关系式。(3)在关系式两端取极限,得以关于A的方程,若能解出A,问题得解。例8求数列其中(a>0)极限解:设,…则{}是单调有界数列,它必有极限,设其极限为A在两边取极限得即所以,因为A>0所以即(4)利用定积分计算计算项数无限增多的无穷小量之和,有时可设法把问题化为某一函数在某一区间上的积分和的极限问题,从而利用定积分求解。有时问题呈现乘积的形式,也可试用本方法,只式要先取对数将问题转化为和的形式。例6计算解、先考虑,从而有因此(5)变上限积分的极限常用的变上限积分的等价无穷小有:其中上述等式可以用洛比塔法则直接证明,证明中我们可以看到被积函数之间是等价无穷小,由此可得将被积函数用等价无穷小代换后的变上限积分仍是等价无穷小,即是:定理3若当存在,,则。证明:由此定理还可以得出如下结论,例如:例7求解原式=例8求解原式=(6)幂指数数激增和Taylor公式使用定理4设,且证明例9求解因为,当时,有,所以原式=在求极限过程中,初学者往往对问题直接计算,造成计算量大,甚至死路一条,若平时学习注意积累一些必要的素材,对极限问题按所掌握的素材进行构造性的转换,利用等价无穷小进行化简,再结合洛比达法则,就很容易得答案了。从而有效地提高学生思维的开放性,增强其解决复杂问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论