




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年广西壮族自治区南宁市横县民族中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,则△ABC外接圆的直径为(
)A.
B.
C.
D.参考答案:B2.如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于
A
B
C
D参考答案:B3.已知向量,满足,,,则与的夹角为()A. B. C. D.参考答案:B【分析】将变形解出夹角的余弦值,从而求出与的夹角。【详解】由得,即
又因为
,所以,所以,故选B.【点睛】本题考查向量的夹角,属于简单题。4.定义全集U的子集的特征函数为,这里表示集合在全集U中的补集,已,给出以下结论:①若,则对于任意,都有;②对于任意都有;③对于任意,都有;④对于任意,都有.则结论正确的是 ()A.①②③ B.①②④ C.①③④ D.②③④参考答案:A利用特殊值法进行求解.设对于①有可知①正确;对于②有,可知②正确;对于③有,,可知③正确;5.已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不可能是()A. B.π C. D.参考答案:D【考点】正弦函数的定义域和值域.【分析】由题意得,x∈[a,b]时,﹣1≤sinx≤,定义域的区间长度b﹣a最小为,最大为,由此选出符合条件的选项.【解答】解:函数y=2sinx的定义域为[a,b],值域为[﹣2,1],∴x∈[a,b]时,﹣1≤sinx≤,故sinx能取到最小值﹣1,最大值只能取到,例如当a=﹣,b=时,区间长度b﹣a最小为;当a=﹣,b=时,区间长度b﹣a取得最大为,即≤b﹣a≤,故b﹣a一定取不到,故选:D.6.已知不等式对任意及恒成立,则实数的取值范围为
A
B
C
D参考答案:B7.下列函数中,周期为π,且在[]上为减函数的是()A.y=sin(x+) B.y=cos(x+) C.y=cos(2x+) D.y=sin(2x+)参考答案:D【考点】H2:正弦函数的图象.【分析】利用函数的周期公式,求出A、B、C、D的周期,排除选项后,利用函数的单调性判断出满足题意的选项.【解答】解:对于A,y=cosx,周期为2π,不符合;对于B,y=﹣sinx,周期为2π,不符合;对于C,y=﹣sin2x,周期为π,在[]上为增函数;对于D,y=cos2x,周期为π,在[]上为减函数,故选D.【点评】本题是基础题,考查三角函数的诱导公式的应用,函数的周期性单调性,考查计算能力.8.函数f(x)=ax与g(x)=ax-a的图象有可能是下图中的(
)参考答案:D9.设f(x)=asin(πx+α)+bcos(πx+β)+2,其中a、b、α、β为非零常数.若f(2013)=1,则f(2014)=
(
)A.3
B.2
C.-1
D.以上都不对参考答案:A略10.设
,则的值为(
)
A.
B.3
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.在ABC中,M是BC的中点,AM=5,BC=8,则=____________。参考答案:12.(5分)函数的周期是
.参考答案:4π考点: 三角函数的周期性及其求法.专题: 三角函数的求值.分析: 利用正弦函数的周期公式即可求得答案.解答: ∵,∴其周期T==4π,故答案为:4π.点评: 本题考查三角函数的周期性及其求法,是基础题.13.已知函数,则f(x)的定义域为;当x=时,f(x)取最小值.参考答案:[﹣2,2];±2.【考点】函数的值域;函数的定义域及其求法.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】由题意得4﹣x2≥0,从而求函数的值域,再确定函数的最小值点.【解答】解:由题意得,4﹣x2≥0,解得,x∈[﹣2,2];当x=±2时,f(x)有最小值0;故答案为;[﹣2,2],±2.【点评】本题考查了函数的定义域的求法及函数的最值的确定.14.已知,sin()=-则等于
.参考答案:-56/65略15.给定两个长度为2且互相垂直的平面向量和,点C在以O为圆心的圆弧上变动,若,其中x,y∈R,则x+y的最大值是.参考答案:【考点】9H:平面向量的基本定理及其意义.【分析】点C在以O为圆心的圆弧AB上变动,则||=2,可以得出x和y的关系式,再利用三角换元法求出x+y的最大值.【解答】解:由题意||=2,即4x2+y2=4,∴x2+=1;令x=cosθ,y=2sinθ,则x+y=cosθ+2sinθ=(cosθ+sinθ)=sin(θ+φ)≤;∴x+y的最大值是.故答案为:.16.已知函数是奇函数,当时,;则当时,_____________________.参考答案:17.已知是两个不同平面,直线,给出下面三个论断:①
②
③以其中两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题_______.参考答案:①②③(答案不唯一,或②③①)【分析】假设其中两个论断为条件,其余为结论,再根据线面关系的定理推断命题是否正确.【详解】①②为条件,③为结论,证明如下:若,,则内有一条直线与平行,若,则内必有两条相交直线与垂直,所以直线与直线垂直,所以,所以.【点睛】本题考查空间线面关系的证明,此题也可举例推翻错误命题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知正项等差数列{an}的前n项和为Sn,若,且成等比数列.(1)求{an}的通项公式;(2)设,记数列{bn}的前n项和为,求Tn.参考答案:(1);(2)【分析】(1)利用等差数列S3=12,等差中项的性质,求得a2=4,结合2a1,a2,a3+1成等比数列,得a22=2(a2-d)(a2+d+1),进而求得的通项公式;(2)确定数列的通项,利用错位相减法求数列的和.【详解】设公差为d,则∵S3=12,,即a1+a2+a3=12,∴3a2=12,∴a2=4,又∵2a1,a2,a3+1成等比数列,∴a22=2(a2-d)(a2+d+1),解得d=3或d=-4(舍去),∴an=a2+(n-2)d=3n-2(2),∴①①×得
②①-②得
,∴.【点睛】本题考查了等差数列和等比数列的性质,以及等差数列的通项公式和等比数列的求和公式,考查了数列求和的错位相减法.错位相减法适用于{}型数列,其中分别是等差数列和等比数列.19.(12分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.参考答案:考点: 平面与平面垂直的判定;直线与平面平行的判定.专题: 立体几何.分析: (1)要证直线EF∥平面PCD,只需证明EF∥PD,EF不在平面PCD中,PD?平面PCD即可.(2)连接BD,证明BF⊥AD.说明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后证明平面BEF⊥平面PAD.解答: 证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD?平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF?平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF?平面EBF,所以平面BEF⊥平面PAD.点评: 本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.20.(本小题满分8分)已知二次函数在区间上有最大值,求实数的值.参考答案:由,得函数的对称轴为:,……1分①当时,在上递减,,即;
……3分②当时,在上递增,,即;
……5分③当时,在递增,在上递减,,即,解得:与矛盾;……………7分综上:或
……8分21.已知是定义在R上的奇函数,当时,.(1)求的值;(2)求的解析式;(3)解关于的不等式,结果用集合或区间表示.参考答案:略22.(本题满分12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段,…后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年山东大集物流科技集团有限公司招聘真题
- 2024年宁波卫生职业技术学院招聘真题
- 2024年麻城市市属事业单位考试真题
- 2024年连云港市市属事业单位考试真题
- 2024年贵州榕晟体育文化产业有限责任公司招聘聘笔试真题
- 2024年安康高新中等职业学校专任教师招聘真题
- 2024年安徽省第一轻工业学校专任教师招聘真题
- 窗帘购买安装合同范本
- (一模)桂林市、来宾市2025届高考第一次跨市联合模拟考试 政治试卷(含答案详解)
- 收购抵押吊车合同范本
- 全过程造价咨询服务实施方案
- 2022年安徽省淮北市电焊工电焊工模拟考试(含答案)
- 有限空间作业安全培训
- 泰国落地签证申请表
- 神经内科住院医师规范化培训结业实践技能考核指导标准
- GB/T 26081-2022排水工程用球墨铸铁管、管件和附件
- GB/T 36362-2018LED应用产品可靠性试验的点估计和区间估计(指数分布)
- GA/T 1356-2018国家标准GB/T 25724-2017符合性测试规范
- 2022年“科技素养提升行动”知识竞赛考试题库700题(含各题型)
- 2022邮储银行综合柜员(中级)理论考试题库大全-上(单选、多选题)
- 【经典】销售就是玩转情商课件
评论
0/150
提交评论