工件输送机设计本科毕设论文_第1页
工件输送机设计本科毕设论文_第2页
工件输送机设计本科毕设论文_第3页
工件输送机设计本科毕设论文_第4页
工件输送机设计本科毕设论文_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业论文(设计)工件输送机设计摘要在科技越来越发达的今天,在各行各业中生产效率变得成为了关键,而工件的运输效率是提高生产效率的因素之一,于是工件输送机的作用越来越大,各生产企业对工件输送机的要求也变得更高。本设计主要致力于传动装置主要部件的设计,要求传动机构各部件能很好地配合,能很好地控制传递距离和速度,并在节省投资和控制方面有比较好的调节。本设计的主要研究内容是设计连杆结构的尺寸以及齿轮传动的主要参数等,对主要研究部分的部件进行了选型,设计,校核。关键词:输送机;连杆机构;齿轮传动临沂大学机械工程学院 2014届本科毕业设计ABSTRACTNowadays,scienceandtechnologyismoreandmoredeveloped,whiletheworkpiecetransportationefficiencyisafactortoimproveproductionefficiency.Sotheworkpiececonveyorismoreandmoreimportantrole,eachproductioncompanyontheworkpiececonveyoranddemandmuchhigher.Thisdesignmainlydevotetodrivethedesignofmainparts,requiresthecomponentsofthetransmissionmechanismwithagoodcoordination,canwellcontrolthetransmissiondistanceandvelocity,andinsavinginvestmentandcontrolhasbetterregulation.Themainresearchcontentsofthisdesignisdesignthesizeofconnectingrodstructureandthemainparametersofgeartransmissionandsoon.Todrivethevariouscomponentsoftheselection,designandverification.Keywords:conveyor;linkagemechanism;geartransmission临沂大学机械工程学院 2014届本科毕业设计目录1绪论,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,21.1研究的目的及意义,,,,,,,,,,,,,,,,,,,,,,,,,21.2国内外研究状况,,,,,,,,,,,,,,,,,,,,,,,,,,21.3设计要求,,,,,,,,,,,,,,,,,,,,,,,,,,,,,31.4方案比较,,,,,,,,,,,,,,,,,,,,,,,,,,,,,32连杆机构的设计,,,,,,,,,,,,,,,,,,,,,,,,,,,,52.1连杆机构的定义及特点,,,,,,,,,,,,,,,,,,,,,,,52.2平面曲柄摇杆机构,,,,,,,,,,,,,,,,,,,,,,,,,52.3平面四连杆机构有曲柄的条件,,,,,,,,,,,,,,,,,,,,62.4连杆设计内容,,,,,,,,,,,,,,,,,,,,,,,,,,,62.4.1摇杆的摆角初选,,,,,,,,,,,,,,,,,,,,,,,62.4.2铰点位置和曲柄长度的设计,,,,,,,,,,,,,,,,,,6临沂大学机械工程学院 2014届本科毕业设计2.4.3曲柄摇杆机构的设计,,,,,,,,,,,,,,,,,,,,,62.4.4校核最小传动角,,,,,,,,,,,,,,,,,,,,,,,73机构的运动和动力分析,,,,,,,,,,,,,,,,,,,,,,,,,83.1概述,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,83.2用矢量方程图解法作平面连杆机构的速度和加速度分析,,,,,,,,,83.2.1绘制机构运动简图,,,,,,,,,,,,,,,,,,,,,,83.2.2作速度分析,,,,,,,,,,,,,,,,,,,,,,,,,83.2.3作加速度分析,,,,,,,,,,,,,,,,,,,,,,,,93.3用矢量方程图解法作平面连杆机构的动态静力分析,,,,,,,,,,103.3.1对机构进行运动分析,,,,,,,,,,,,,,,,,,,,113.3.2确定各构件的惯性力和惯性力偶矩,,,,,,,,,,,,,,113.3.3机构的动态静力分析,,,,,,,,,,,,,,,,,,,,124杆件的设计,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,164.1杆件的类型,,,,,,,,,,,,,,,,,,,,,,,,,,,164.2钢材和截面的选择,,,,,,,,,,,,,,,,,,,,,,,,164.3杆件间的联结,,,,,,,,,,,,,,,,,,,,,,,,,,164.3.1剪切强度计算,,,,,,,,,,,,,,,,,,,,,,,174.3.2挤压强度计算,,,,,,,,,,,,,,,,,,,,,,,174.3.3稳定性的校核,,,,,,,,,,,,,,,,,,,,,,,175减速器的设计,,,,,,,,,,,,,,,,,,,,,,,,,,,,,185.1电动机的选择,,,,,,,,,,,,,,,,,,,,,,,,,,195.1.1选择电动机类型和机构形式,,,,,,,,,,,,,,,,,195.1.2功率的计算,,,,,,,,,,,,,,,,,,,,,,,,195.1.3电动机功率计算,,,,,,,,,,,,,,,,,,,,,,195.1.4传动效率,,,,,,,,,,,,,,,,,,,,,,,,,195.1.5确定电动机转速,,,,,,,,,,,,,,,,,,,,,,205.2确定传动装置的总传动比和分配传动比,,,,,,,,,,,,,,,205.2.1总传动比,,,,,,,,,,,,,,,,,,,,,,,,,205.2.2分配减速器的各级传动比,,,,,,,,,,,,,,,,,,21临沂大学机械工程学院 2014届本科毕业设计5.3计算传动装置的运动和动力参数,,,,,,,,,,,,,,,,,,215.3.1各轴转速,,,,,,,,,,,,,,,,,,,,,,,,,215.3.2各轴输入功率,,,,,,,,,,,,,,,,,,,,,,,215.3.3各轴输入转矩,,,,,,,,,,,,,,,,,,,,,,,215.4减速器结构的设计,,,,,,,,,,,,,,,,,,,,,,,,215.4.1机体结构,,,,,,,,,,,,,,,,,,,,,,,,,215.4.2铸铁减速器机体的结构尺寸见下表5-2(单位㎜),,,,,,,,225.5传动零件的设计计算,,,,,,,,,,,,,,,,,,,,,,,235.5.1减速器外传动零件的设计,,,,,,,,,,,,,,,,,,235.5.2减速器内传动零件的设计,,,,,,,,,,,,,,,,,,235.6轴的设计,,,,,,,,,,,,,,,,,,,,,,,,,,,,265.6.1轴的结构和尺寸的确定,,,,,,,,,,,,,,,,,,,265.6.2轴的支点距离和力作用点的确定,,,,,,,,,,,,,,,265.7滚动轴承的设计,,,,,,,,,,,,,,,,,,,,,,,,,305.7.1选择原则,,,,,,,,,,,,,,,,,,,,,,,,,305.7.2滚动轴承的失效,,,,,,,,,,,,,,,,,,,,,,,305.7.3轴承端盖结构,,,,,,,,,,,,,,,,,,,,,,,315.7.4轴承的润滑与密封,,,,,,,,,,,,,,,,,,,,,315.7.5减速器的润滑,,,,,,,,,,,,,,,,,,,,,,,325.8轴承盖上的螺纹强度计算,,,,,,,,,,,,,,,,,,,,,325.9键的选择和强度校核,,,,,,,,,,,,,,,,,,,,,,,335.10联轴器的选择计算,,,,,,,,,,,,,,,,,,,,,,,,336开式齿轮的设计,,,,,,,,,,,,,,,,,,,,,,,,,,,,346.1开式齿轮计算公式,,,,,,,,,,,,,,,,,,,,,,,,346.2计算参数的选取如下,,,,,,,,,,,,,,,,,,,,,,,346.3确定传动主要尺寸,,,,,,,,,,,,,,,,,,,,,,,,357机架的设计,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,358输送机附件的设计,,,,,,,,,,,,,,,,,,,,,,,,,,,358.1辊子设计,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,36临沂大学机械工程学院 2014届本科毕业设计8.2推爪和扭簧设计,,,,,,,,,,,,,,,,,,,,,,,,,,,369结论,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,37参考文献,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,37致谢,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,38临沂大学机械工程学院 2014届本科毕业设计绪论1.1研究目的及意义输送机是在一定线路上连续输送物料的物料搬运机械,又称连续输送机。它结构简单、造价低、输送能力大,运输距离长,还可在输送过程中同时完成若干工艺操作,可进行水平、倾斜输送,也可组成空间输送线路,有很高的生产率。在实际应用中,可以单机输送,也可以多机组成或与其他输送设备组成水平或倾斜的输送系统,以满足不同工艺布置形成的需要。在任何的设备生产线上,不管是物料,还是工件及部件的输送都要用到输送机。它被广泛应用于农业、冶金、采矿、煤炭、电站、港口以及工业企业等。在越来越注重生产效益的今天,自动化的输送可以节省很多不必要的时间和人力资源,从而可以获得最高的收益。工件传输机在自动化流水线上的充分运用能提高工厂的生产率,减轻工人的劳动强度,保障工人的生命安全,为实现车间无人化提供了可靠的条件。本课题来源于社会生产实践,属于工程设计类。在自动化生产线中进料及出料都要求实现自动化,本课题即是为了解决这一实际问题的。采用什么机构或传动方式、速度及加速度、运动轨迹的设计是其中的核心问题,某些结构的优化设计也可成为设计的内容,本课题是典型的机械设计及理论的应用[1]。1.2国内外研究状况国外输送机技术的发展很快,其主要表现在二个方面:一方面是输送机的功能多元化、应用范围扩大化,如高倾角带输送机、管状输送机、空间转弯输送机等各种机型;另一方面是输送机本身的技术与装备有了巨大的发展,尤其是长距离、大运量、高带速等大型输送机已成为发展的主要方向,其核心技术是开发应用于了输送机动态分析与监控技术,提高了输送机的运行性能和可靠性。目前,在煤矿井下使用的输送机已达到表1所示的主要技术指标,其关键技术与装备有以下几个特点:(1)设备大型化。其主要技术参数与装备均向着大型化发展, 以满足年产300-500万t以上高产高效集约化生产的需要。(2)应用动态分析技术和机电一体化、计算机监控等高新技术,采用大功率软起动与自动张紧技术,对输送机进行动态监测与监控,大大地降低了输送带的动张力,1临沂大学机械工程学院 2014届本科毕业设计设备运行性能好,运输效率高。(3)采用多机驱动与中间驱动及其功率平衡、输送机变向运行等技术,使输送机单机运行长度在理论上已有受限制,并确保了输送系统设备的通用性、互换性及其单元驱动的可靠性。(4)新型、高可靠性关键元部件技术。如包含 CST等在内的各种先进的大功率驱动装置与调速装置、高寿命高速托辊、自清式滚筒装置、高效贮带装置、快速自移机尾等。我国生产制造的输送机的品种、类型较多。近年来,通过国家一条龙“日产万吨综采设备”项目的实施,输送机的技术水平有了很大提高,煤矿井下用大功率、长距离输送机的关键技术研究和新产吕开发都取得了很大的进步。如大倾角长距离输送机成套设备、高产高效工作面顺槽可伸缩输送机等均填补了国内空白,并对输送机的减低关键技术及其主要元部件进行了理论研究和产品开发,研制成功了多种软起动和制动装置以及以PLC为核心的可编程电控装置,驱动系统采用调速型液力偶合器和行星齿轮减速器[1]。1.3设计要求:输送机的工作阻力 Fr=5000N,步长S=450mm,往复次数 N=40次/分,行程速比系数K=1.3,高度H=800mm。输送时滑架受到的阻力Fr视为常数,滑架宽度为250mm,使用折旧期为5年,每天二班制工作,载荷里有中等冲击,工作环境清洁,室内,三相交流电源,工作机构效率为0.95,用于小批量生产。1.4方案比较经过反复调查研究,查阅相关资料,我们根据工件传输机的工作状况的要求,提出了以下四种方案:方案一:直接用带传动和步进电动机来实现滑架的往返运动,通过步进电动机的正反转控制往返运动,通过单片机控制驱动电路来设置相关的运动参数。方案二:运用齿轮齿条和步进电动机来实现滑架的往复运动,通过步进电机的正反转,齿条固定在滑架上,利用齿轮齿条间的传动来实现滑架的往返运动。方案三:采用液压凸轮机构为主,以达到设计要求。本方案采用液压动力装置以推动挡板左右往复运动。再采用凸轮机构推动挡板做上下的往复运动。该机构由液压机构和凸轮机构相互配合,使挡板做曲线运动。方案四:运用连杆机构,减速器,普通电动机。通过普通电动机可以获得运动所需要的动力,减速器调整相应的速度和节奏,连杆机构实现不同的速度比,节奏,步2临沂大学机械工程学院 2014届本科毕业设计长和滑架的运动轨迹[2]。方案图入下:机架2.连杆机构3.滑架4.推爪5.减速机构6.滚筒1.Rack 2.ConnectingRod 3.SlidingFrame 4.TheThrustClaw 5Retarder 6.Roller图1 工件输送机结构图Table1 WorkpieceConveyor工作时,电动机通过传动装置、连杆机构,驱动滑架往复移动工件,工作行程时,滑架上的推爪推动工件前移一个步长,当滑架返回时,因为推爪与轴之间装有扭簧,所以推爪从工件下滑过,工件保持不动,当滑架再次向前推进时,推爪已复位,前方推爪也推动前一工件前移,如此周而复始,工件不断前移。经过可行性调研,我们发现方案一中步进电机的功率和工作状况要求中的中度冲击问题对步进电机的影响不能很好的解决,而且步进电机拥有一个很明显的优点,就是它有精确的正反转功能,因为步进电机是将电脉冲信号转化为角位移,或线位移的开环控制元件,在非超载的情况下,电机的转速,停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载的变化而影响,即给电机加一个脉冲信号,电机则转过一个步距角,这一线性关系的存在,加上步进电机只有同期性的误差而无累积误差等特点,使得在速度控制领域用步进电机来控制变的非常简单,而且低速精度高。虽然如今步进电机已经被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规条件下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等太多的专业知识。方案二也存在类似的问题,方案三机构结构简单,构造也较为普通,且运行时噪声低。运动行程一眼明了,缺点是该机构有两个自由度,所以运动难遇控制,不够平稳。而且液压机构成本太高,维护检修复杂。而方案四相对于方案一、方案二的问题有了很好的实现,而且普通电动机容易选择,减速器和连杆机构,结构可靠,稳定性高,可以承受一定的冲击,在连杆与连杆之间采用滚轮连接,有效的减小了摩擦力。所以此方案较合理。在整个设计过程中,减速器部分和连杆机构的设计和分析应是本课题的重点,运用机械设计和机械原理的相关内容来设计,设计的主要内容应包括工作机构和传动系统的运动分析,连杆机构的运动和动力分析,减速器的设计,减速器零件的制造以及相关工艺流程。本课题的难点是连杆尺寸的分析和动力运动的分析,减速器的各轴和齿轮的计算设计 [2]。连杆机构的设计2.1连杆机构的定义及特点3临沂大学机械工程学院 2014届本科毕业设计连杆机构是一种应用非常广泛的机构,折叠伞的收放机构,机械手的传动机构以及人体假肢的设计等,都是连杆机构。连杆机构的定义:(1)原动件的运动都要经过一个不直接与机架相联的中间构件才能传动从动件,中间构件称为连杆。这些机构统称为连杆机构。(2)这些机构中的运动副一般均为低副。故连杆机构也称低副机构。连杆机构的特点:(1)连杆机构中构件间以低副相连,低副两元素为面接触,在承受同样载荷的条件下压强较低,因而可用来传递较大的动力。又由于低副元素的几何形状比较简单,故容易加工。(2)构件运动形式具有多样性。连杆机构中既有绕定轴转动的曲柄、绕定轴往复摆动的摇杆,又有作平面一般运动的连杆、作往复直线移动的滑块等,利用连杆机构可以获得各种形式的运动,这在工程实际中具有重要价值。在主动件运动规律不变的情况下,只要改变连杆机构各构件的相对尺寸,就可以使从动件实现不同的运动规律和运动要求。(4)连杆曲线具有多样性。连杆机构中的连杆,可以看作是在所有方向上无限扩展的一个平面,该平面称为连杆平面。在机构的运动过程中,固接在连杆平面上的各点,将描绘出各种不同形状的曲线,这些曲线称为连杆曲线。(5)在连杆机构的运动过程中,一些构件(如连杆)的质心在作变速运动,由此产生的惯性力不好平衡,因而会增加机构的动载荷,使机构产生强迫振动。所以连杆机构一般不适于用在高速场合。(6)连杆机构中运动的传递要经过中间构件,而各构件的尺寸不可能做得绝对准确,再加上运动副间的间隙,故运动传递的累积误差比较大[3]。2.2平面曲柄遥感机构在铰链四连杆机构中,若两个连架杆中一个为摇杆,另一个为曲柄,那么这个四杆机构称为曲柄摇杆机构。在曲柄摇杆机构中,当曲柄为原动件,摇杆为从动件时,可以把曲柄的连续转动转变为摇杆的往复摆动,此种机构应用比较广泛。2.3平面四连杆机构有曲柄的条件杆长之和条件:平面四杆机构的最短杆和最长杆的长度之和小于或者等于其余两杆长度之和。(2)在铰链四杆机构中,如果某个转动副能够成为整转副,则它所连接的两个构件中,必有一个为最短杆,并且四个构件的长度关系满足杆长之和条件。(3)在有整装副存在的铰链四杆机构中,最短杆两端的转动副均为整转副。此时,如果取最短杆为机架,则得到双曲柄机构;若取最短杆的任何一个相连构件为机架,则得到曲柄摇杆机构;如果取最短杆对面构件为机架,则得到双摇杆机构。 (4)如果四杆机构不满足杆长之和条件,则不论选取哪个构件为机架,所得到机构均为双摇杆机构。综4临沂大学机械工程学院 2014届本科毕业设计上所述:平面四杆机构中曲柄存在的条件是四个杆的长度关系,谁做机架决定是否会存在曲柄[1]。2.4连杆设计内容输送机的工作阻力 Fr=5000N,步长S=450mm,往复次数 N=40次/分,行程速比系数K=1.3,高度H=800mm。输送时滑架受到的阻力Fr视为常数,滑架宽度为250mm,使用折旧期为5年,每天二班制工作,载荷里有中等冲击,工作环境清洁,室内,三相交流电源,工作机构效率为 0.95,用于小批量生产。2.4.1 摇杆的摆角初选根据设计的常识一般初选摆角为 40°-50°左右,再由步长定摇杆长度,一般取LCD≈(0.6-0.7) LDE , LEF≈(0.2-0.3) LDE。2.4.2 铰点位置和曲柄长度的设计根据行程速比和传动角要求铰点 A的位置及曲柄连杆长度。根据所给条件以及现场的要求,和行程速比系数 K,在设计四连杆时,可利用机构在极位时的几何关系,再运用其它辅助条件进行设计,机构运动示意图如图 2。2.4.3 曲柄摇杆机构的设计5临沂大学机械工程学院 2014届本科毕业设计通过摆角及行程速比系数 K=1.3和摇杆长度来设计该机构。首先按公式 =180°(K-1)/(K+1) 算出极位夹角 为23.5°。然后任取一点D,再用此点为顶点作等腰三角形 ,使两腰的长度等于CD,∠C1DC2。作C2N使∠C2C1N=90°-,再作C2M⊥C1C2,C2M与C1N的交点P。作△PC2C1的外接圆,那么圆弧C1PC2上任一点A到C1和C2的连线所形成的夹角∠C1AC2都等于极位夹角,所以曲柄的轴心A应在这个圆弧上。设曲柄的长度为a,连杆的长度为b,那么AC1=b+a,AC2=b-a,所以a=(AC1-AC2)/2于是以A为圆心,以为AC2为半径作圆弧交AC1于点E,则得出a=EC1/2,b=AC1-EC1/2。设计时应注意,曲柄的轴心A不能选在弧段上,否则机构将不能满足运动连续性的要求。根据上面的方法可以算出平面四连杆机构的杆长分别为a=115mm,b=385mm,c=380mm,d=380mm。图2 机构的运动示意图Fig.2 Kinematicdiagramofmechanism2.4.4 校核最小传动角在机构运动过程中,传动角的大小是不停变化的,为了保证机构的传动性能要求,设计时应使min≥40°传递力矩比较大时,则应使min≥50°;对于一些受力很小或者不经常使用的操纵机构,则可允许传动角小一些,只要不发生自锁就可以。最小传动角与机构中各杆的长度有关,见下面的公式:=arccosb2c2(da)237523802(390125)2式(1)2bcarccos237538040.5406临沂大学机械工程学院 2014届本科毕业设计所以满足最小传动角的要求。因此可以定出该要求设计的机构的总体尺寸,即LAB=a=115mm,LBC=b=385mm,LCD=c=380mm,LAD=d=380mm,LDE =550mm,LEF=180mm。上面的LAB是杆件AB的长度,LBC是杆件BC的长度,LCD是杆件CD的长度,LAD是杆件AD的长度,LDE是杆件DE的长度,LEF是杆件EF的长度机构的运动和动力分析3.1概述用矢量方程图解法进行机构的速度和加速度的分析,矢量方程图解法依据的基本原理是理论力学中的运动合成原理。对机构进行速度和加速度的分析时,首先要根据运动合成原理列出机构运动的矢量方程,然后再根据该方程来作图进行解决。3.2用矢量方程图解法作平面连杆机构的速度和加速度分析根据构件上已知的一点的速度和加速度能够求出另外的点的速度和加速度 (包括大小和方向),所以在以图解法作机构的速度和加速度的分析的时候,应该先从具备这个条件的构件着手,再分析与该构件依次相连的其他各构件。在用图解法作机构的运动分析时,需要先绘出该机构的运动简图,然后再根据运动简图进行速度和加速度的分析,求解的步骤说明如下:3.2.1 绘制机构运动简图根据前面所描绘的方法和步骤,选取尺寸比例尺 L=LAB AB(m/mm),并按照比例尺准确地绘制出机构的运动简图如图 1-1所示。3.2.2 作速度分析根据用矢量方程图解法作平面连杆机构的速度分析可知,速度求解的步骤应依次求出相应各点的速度和杆件的角速度[6]。图3速度分析图Fig.3 Velocitydiagram7临沂大学机械工程学院 2014届本科毕业设计1)求vBvBLAB10.115m6040rad/s0.077m/s式(2)方向垂直于AB,指向与1的转向一致。2)求vC因点C及点B都为同一构件2上的点,故得vC=vB+vCB方向CDABCB大小√式中vC及vCB的大小未知,所以用图解法求解。如图3所示,取点P作为速度多边行的极点,并作 pb代表vB,那么速度比例尺可以求得VVB/pb(m/s)mm0.077m/s200mm

0.000385(m/s)/mm。再分别自点B,P作垂直于BC,CD的直线bc、pc,代表vCB,vC的方向线,两线交于点C,则矢量pc,bc分别代表vC和vCB,于是得vCVpcm/s210mm0.077式(3)200(m/s)/mm0.08085m/s3)求vE由于E点和C点都在杆件3上,杆件3上的点的角速度都相同,所以vELCDvC0.126m/s4)求vFvF=vE+vFE方向//FE√大小√vFVpfm/s255mm0.077式(4)200(m/s)0.0982于是有VCBVbc0.000385452LCBLCBrad/s0.3853VCDVpcrad/s0.000385210LCDLCD0.3804VEFVpfrad/s0.000385255LEFLEF0.180

0.045rad/s式(5)0.2128rad/s式(6)0.5454rad/s式(7)3.2.3作加速度分析加速度求解的步骤与速度分析相同,也是先依次求出aB,aC,aE,aF。然后再求解2,3,41)求aB因为曲柄LAB作等速回转,所以没有切向加速度。n22m/s20.051m/s2式(8)aBaBALAB10.115(6040)方向由B指向A.8临沂大学机械工程学院 2014届本科毕业设计2)求aC根据点C分别对于点D和点B的相对运动关系可得aC=ntaB+ntaCD+aCD=aCB+aCB方向C→D⊥CDB→AC→B⊥CB大小lCD2√23lCB2tt式中aCD和aCB的大小未知,故可用作图法求解。图4加速度分析图Fig.4 Accelerationanalysisdiagram如图3-3所示,取点p作为加速度多边形的极点,并作pb代表aB,则加速度比例尺可求得2)/mm0.051m/s22aaB/pb(m/s200mm0.000255(m/s)/mm,然后再按上式作图,可求得pc代表aC,其大小为aCapcm/s220.0319m/s2式(9)0.000255(m/s)/mm125mm3)求aE因为点E和点C都在杆LDE上aEL0.0385m/s20.056m/s2式(10)LDEaC380550CD4)求aF利用点F和点E的相对运动关系可得aFaE+n+t=aFEaFE方向√F→E⊥FE大小水平向右√lEF24式中a的方向和aFEt的大小未知,用作图法求解。如图所示。FaFapfm/s20.000255(m/s2)/mm128mm0.0326m/s2式(11)5)求2,3,4。根据上面求构件角加速度的方法可得tn2ca2340.00025522aCB0.155rad/s逆时针式(12)LCBLCB0.3859临沂大学机械工程学院2014届本科毕业设计aCDtn3ca1100.0002550.074rad/s2顺时针式(13)3LCDLCD0.380aEFtn4ca2630.0002552顺时针式(14)4LEFLFE0.1800.373rad/s3.3用矢量方程图解法作平面连杆机构的动态静力分析动态静力分析是根据达朗贝尔原理将惯性力和外力加在机构的相应构件上,用静力平衡的条件求出各运动副中的反力和原动件上的平衡力的一种比较常用的工程方法。进行动态静力分析首先是求出个构件的惯性力,并把它们当作外力加于产生这些惯性力的构件上面。然后再根据静定条件将机构分解为若干个平衡力和构件组作用的构件。而进行力分析的顺序一般是由离受平衡力作用的构件的最远构件组开始,逐步推算到平衡力作用的构件上[7]。3.3.1 对机构进行运动分析在之前的运动分析里,已经用选定好的长度比例尺 I,速度比例尺 v,加速度比例尺 a,绘出了机构简图及其速度多边形和加速度多边形。3.3.2 确定各构件的惯性力和惯性力偶矩在对机械进行动态静力分析时需要求出各构件的惯性力,在新机械的设计中,机构中各构件的结构尺寸,质量和转动惯量等参数都尚未确定,根据设计经验先给出各构件的质量和转动惯量等参数,再进行静力分析,在这个基础上进行各构件的强度验算,再根据验算的结果对构件尺寸进行修正,最后定出构件的结构尺寸。(1)计算各杆的质量及转动惯量因为各杆都是拉压杆件,要求力学综合性能较高,所以选 45号钢,各杆应初选直径。查表得密度7.8103kg/m3。根据质量m2lkg,d4转动惯量J121ml2kgm2计算结果见表14.3杆件间的联结拉压杆与其它构件之间,或者一般构件与构件之间,常采用销轴,耳片,螺栓等相联接,本设计采用销轴、耳片。连结件的受力与变形都比较复杂,在工程实际中,我们常常采用简化分析的方法。他的要点是:对连接件的受力与应力分布进行简化,然后计算出各部分的名义应力。以下为计算轴和耳片[3]。4.3.1剪切强度计算考虑图中所示的轴销,它的受力情况如图所示,可以看出,作用在轴销上面的外力有以下几个特点:外力垂直作用于轴销的轴线,且作用线之间的距离很小(轴销一10临沂大学机械工程学院 2014届本科毕业设计般都是短而粗的)。根据受力情况可以看出,轴销上主要受剪切力的作用。在工程力学计算中,通常都假设剪切面上的剪应力是均匀分布的。剪切面上的剪应力不得超过连接件上的许用剪应力[],即要求Q[]QP也即4P[]式(26)Ad4其中许用剪切应力[]表示为连接件的剪切极限应力除以安全系数。[]400MPa100MPa式(27)S4[P]d2[]502100MPa1962KN式(28)444.3.2 挤压强度计算在外力作用下,孔与销轴直接接触,接触面上的应力称为挤压应力。当挤压应力过大时,在孔和销接触的局部区域内,将产生明显的塑性变形,导致影响孔,销间的正常配合。最大挤压应力bs发生在该表面的中部。挤压应力为Fbs,销或孔的直径为d,耳片的厚度为t,根据实验分析结果得知:Fb式(29)bstdTd表示受压圆柱面在相应径向平面上的投影;bs表示最大挤压应力,数值上与径向截面的平均压应力相等。由上述分析可知,为了防止挤压造成破坏,最大挤压应力bs不得超过连接件的许用压应力[bs],即要求bs[bs]式(30)[bs]表示连接件的挤压极限应力除以安全系数。因此,从挤压强度考虑,接头的许用载荷是[P]td[bs]=4030300=360KN式(31)4.3.3 稳定性的校核当作用在细长杆上的轴向力达到或超过一定限度的时候,杆件可能会突然产生弯曲,即失稳现象。因此,对于轴向受压杆件,除了应考虑它的强度和刚度问题外,还应考虑它的稳定问题。11临沂大学机械工程学院 2014届本科毕业设计图12 轴销受力示意图Fig.12 theanxialforcediagram1)临界载荷的计算该连杆为两端铰支细长压杆,根据材料力学中公式可知,它的临界载荷为:2Ed43Ed432061035044428KNPcrl26464l2643752式(32)2)校核45#钢的屈服应力s350MPa,所以,连杆压缩屈服所需的轴向压力为d2S5023506860KNPS44由以上的分析可以得知,为了保证压杆在轴向压力的作用下不被导致失稳满足下面的稳定条件:PPcr[Pst]nst式中:nst代表稳定安全系数;[Pst]代表稳定许用压力。

式(33),必须式(34)工况为一般的中度冲击条件,所以 nst取4P1450N4428KN1107KN式(35)4上述计算表明,细长杆的承压能力是由稳定性的要求确定的。减速器的设计减速器是原动机和工作机之间的独立的闭式传动装置, 用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。选用减速器时应根据工作机的选用条件、技术参数、动力机的性能、经济性等因素比较不同类型、品种减速器的外廓尺寸、传动效率、承载能力、质量、价格等,选择最适合的减速器。减速器是一种相对精密的机械,使用它的目的是降低转速,增加转矩[10]。12临沂大学机械工程学院 2014届本科毕业设计5.1电动机的选择5.1.1 选择电动机类型和机构形式电动机是常用的原动机,并且是标准化和系列化的产品。机械设计中要根据工作机的工作情况和运动,动力参数等,选择合适的电动机类型、结构形式、传递的功率和转速,再根据这些确定电动机的型号。电动机有交流电动机和直流电动机之分,工业上常采用交流电动机。交流电动机有异步电动机和同步电动机两类,异步电动机又分为笼型和绕线型两种,其中普通笼型异步电动机在平时应用最广泛。在一般的设计中,优先选用 Y系列笼型三相异步电动机,因为它具有高效、噪音小、振动小、节能、安全可靠的特点,而且安装尺寸和功率等级符合国际标准,适用于那些无特殊要求的各种机械设备。根据所给条件中工作场地的要求:每天二班制工作,载荷中有中度冲击,工作环境清洁,室内,三相交流电源。所以选择电动机为 Y系列380V三相笼型异步电动机。5.1.2 功率的计算电动机在功率方面的选择是否合适将直接影响到电动机在工作性能和经济性能方面的体现。如果选用的电动机额定功率小于工作机所要求的功率,那么工作机就不能正常工作,而且容易是电动机因为长期过载而导致过早损坏,如果选用的电动机额定功率大于工作机所要求的,那么相比于电动机的价格,没有得到充分的应用,而导致浪费。在设计过程中,由于工件传输机一般为长期连续运转,载荷不变或很少变化的机械,并且传递功率较小,故只需使电动机的额定功率 Ped等于或梢大于电动机的实际输出功率Pd,即PedPd。这样电动机在工作时就不会过热,一般不需要对电动机进行热平衡计算和校核启动力矩。5.1.3 电动机功率计算Pw电动机所需工作功率为 Pd a式中: Pw工作机所需工作功率,指工作机主动端运输带所需功率。由电动机至工作机主运动端运输带的总效率。工作机所需工作功率,应由机器工作阻力和运动参数计算求得 .T560N0.125m40rad/skW2.8kW式(36)Pw1000kW1000aT—工作机的阻力矩 —工作机的角速度5.1.4 传动效率传动装置的总效率应为组成传动装置的各部分运动副效率之乘13临沂大学机械工程学院 2014届本科毕业设计积, 1 2 3 n其中分别为每一传动副,每对轴承,每个连轴器的效率、传动副的效率数值可按下列选取,轴承及连轴器效率的概略值为:滚动轴承0.98-0.995,滑动轴承0.97-0.99弹性连轴器0.99-0.995,齿轮连轴器0.99,万向连轴器0.97-0.98。5.1.5 确定电动机转速容量相同的同类电动机,有几种不同的转速系列供使用者选择,如三相异步电动机常用的有四种同步转速,即 3000、1500、1000、750r/min(相应的电动机定子绕组的极对数为2、4、6、8)。同步转速为由电流频率与极对数而定的磁场转速,电动机空转时才可能达到同步转速,负载时的转速都低于同步转速。为了合理的设计传动装置,根据工作机的主轴转速要求和各传动比范围,可推算出电动机装速的可选范围,其中包括电动机可选转速范围,传动装置总传动比的合理范围,以及工作机主轴转速。选定电动机类型,结构,对电动机可选的转速进行比较,选定电动机转速并计算出所需容量后,即可在电动机产品目录中查出所要的电动机。根据工况和计算所选电动机见下表5-1。表3电动机参数表Table3Motorparameters型号额定满载时起动电起动转最大转功流矩矩率kW转速电流效率功率因额定电额定转额定转素流矩矩YZR132M1-63960r/min8.280.50.696.52.52.85.2确定传动装置的总传动比和分配传动比5.2.1 总传动比由选定的电动机满载转速和工作机主动轴转速,可得到传动装置的总传动比为nmia n其中nm为选择电动机的满载转速,n为工作机主动轴转速。该设计中nm为960r/min,n为40r/min。所以nm960r/min24式(37)ian40r/min总传动比为各级传动比i1,i2,i3,in的乘积,即iai0i1i0,i1分别为减速器各级传动比。5.2.2分配减速器的各级传动比14临沂大学机械工程学院 2014届本科毕业设计按转开式布置,考虑润滑条件,为使两级大齿轮直径相近,可由二级圆柱齿轮减速器传动比分配图资料查得 i0 6.2,则i1 i/i0 24/6.2 3.87。5.3计算传动装置的运动和动力参数为进行传动件的设计计算,要推算出各轴的转速和转矩 (或功率)。如将传动装置各轴由高速至低速依次定为Ⅰ、Ⅱ轴,分别为:i0,i1-- 相邻两轴间的传动比;01,12--相邻两轴间的传动效率;P,P -- 各轴的输入转矩(N·m);n,n --各轴的转速(r/min) ;则可按电动机至工作机运动传递路线推算,得到各轴的运动和动力参数。5.3.1 各轴转速nnmr/min9606.2r/min154.8r/min式(38)l0式中nm为选择电动机的满载转速, i0为电动机至I轴的传动比。n5.3.2 各轴输入功率

nnr/min96024r/min40r/minii0mi式(39)PPd01KW2.80.992.772KW,011式(40)PP12Pd0112KW2.80.990.980.982.689KW,1223式(41)式中 1,2,3分别为连轴器,轴承,齿轮的传动效率。5.3.3各轴输入转矩TTdi001Nm式(42)其中Td为电动机的输出转矩,按下列计算:Td=9550nPmdNm95509602.8Nm27.85Nm式(43)TTdi001Nm27.8510.99Nm27.58Nm式(44)TTi223Nm165.873.870.980.97Nm610.22Nm式(45)同一根轴的输出功率与输入功率数值不同,需要精确计算时应取不同的数值。5.4减速器结构的设计5.4.1 机体结构减速器机体是用以支持和固定轴系的零件,是保证传动零件的啮合精度,良好润滑及密封的重要零件,其重量约占减速器总重量的 50%。因此,机体结构对减速器的工作性能,加工工艺,材料消耗,重量及成本等有很大的影响。15临沂大学机械工程学院 2014届本科毕业设计机体材料用灰铁(HT150或HT200)制造,机体的结构用剖分式机体 [11]。5.4.2 铸铁减速器机体的结构尺寸见下表 4(单位㎜)表4减速器机体的结构尺寸表Table4Reducerbodystructuresize名称符号尺寸机座壁厚10机盖壁厚18机座凸缘厚度b15机盖凸缘厚度b112机座底凸缘厚度b225地脚螺钉直径df16地脚螺钉数目na500时,n8名称符号尺寸轴承旁联接螺栓直径d112机盖与机座联接螺栓直径d29轴承端盖螺钉直径d38窥视孔盖螺钉直径d46定位销直径d7d1,d2,d3至外机壁距离c120d1,d2至凸缘边缘距离c216轴承旁凸台半径R18凸台高度h15外机壁至轴承座端面距离l16大齿轮顶圆与内机壁距离101齿轮端面与内机壁距离102机盖,机座肋厚m1,m26,6轴承端盖凸缘厚度t6轴承旁联接螺栓距离s尽量靠近16临沂大学机械工程学院 2014届本科毕业设计轴承端盖外径D2轴承孔直径(55.5)d3续表5-2螺栓直径M8M10M12M16M20M24M30c1min13161822263440c2min11141620242834沉头座直径20242632404860注:多级传动时,a取低速级中心距。5.5传动零件的设计计算传动装置包括各种类型的零件,其中决定其工作性能,结构布置和尺寸大小的主要是传动零件。支撑零件和联接零件都要根据传动零件的要求来设计,因此一般应先设计计算传动零件,确定其尺寸,参数,材料和结构。为了使设计减速器时的原始条件比较准确,通常应先设计减速器外的传动零件,如链传动,和连轴器等[14]。5.5.1 减速器外传动零件的设计考虑到工作现场的空间和减少传动链的原则,该设计直接采用连轴器,通过连轴器直接把电动机和减速器联结。5.5.2 减速器内传动零件的设计(1)圆柱齿轮传动齿轮材料的选择因传动尺寸和批量较小,小齿轮设计成齿轮轴,选用 45钢,调质处理,硬度229HB-286HB,平均取240HB。齿轮传动的计算方法初步计算转矩T1=9550106Pd95502.827854Nmmnm960齿宽系数d由机械设计手册查表取d=1.0接触疲劳极限Hlim由机械设计手册查表取Hlim1=710MPa,Hlim2=580MPa初步计算的许用接触应力[H1]0.9Hlim10.9710639MPa[H2]0.9Hlim20.9580522MPaAd值由机械设计手册查表取Ad=85初步计算的小齿轮d1A3T122141.77mm式(45)dd[H]u1.05226.217临沂大学机械工程学院 2014届本科毕业设计取d145mm初步齿宽bdd145mm2校核计算圆周速度vd1n1459602.26m/s601000601000精度等级选8级精度齿数z和模数m初取齿数z121,z2i1z1130md1452.14z121由机械设计手册查表取m=2.5z1d14518m2.5z26.218111使用系数KA由机械设计手册查表取KA=1.5动载系数KV由机械设计手册查表取KV=1.2齿间载荷分配系数KH由机械设计手册查表,先取Ft2T12278541238Nd145KAFt1.5123841.3N/min100N/minb45a[1.883.2(Z11Z12)]cos1.883.2(1811111)1.644Z4a41.6440.8833KH111.29Z20.882齿向载荷分布系数KH由机械设计手册查表取KHAB(db)2C103b1.170.1610.61103451.9571载荷系数KKAKVKHKH1.51.21.291.9574.54弹性系数ZE由机械设计手册查表取ZE189.8MPa节点区域系数ZH由机械设计手册查表取ZH=2.5接触最小安全系数SHmin由机械设计手册查表取SHmin=1.05总工作时间th5300160.24800h总应力循环次数NL由机械设计手册查表估计7NL9,则指数m=8.781010n(Ti)8.78thiNL1N60XthiV1i1iTmaxth

式(46)式(47)式(48)式(49)式(50)式(51)式(52)式(53)式(53)式(54)18临沂大学机械工程学院 2014届本科毕业设计60110004800(18.780.20.58.780.50.28.780.3)5.79107原估计应力循环次数正确NL2NL1/i5.79107/6.20.93107式(55)接触寿命系数ZN由机械设计手册查表取ZN1=1.18,ZN2=1.31许用接触应力[H][H1][H2]验算

Hlim1ZN1SHminHlim2ZN2SHmin

1.181.051.311.05

798MPa723MPa

式(56)式(57)HZEZHZ2KTu1189.82.50.8824.54278546.21713MPa[H2]式(58)bd12u454526.2计算结果表明,接触疲劳强度较为合适,齿轮尺寸无需调整。确定传动主要尺寸实际分度圆直径d,因模数取标准值时,齿数已重新确定,故分度圆直径不会改变,即d1mz12.51845mmd?=mz?=2.5×111=277mm中心距am(z1z2)161mm2齿宽bbdd145mmb155mmb245mm计算所得的参数见下表5表5齿轮参数表Table5Gearparameterstable名称代号单位小齿轮大齿轮中心距Amm161传动比I6.2模数mmm2.52.5n螺旋角β度00端面压力角αt度00啮合角α,t度2020齿数Z个18111分度圆直径Dmm45277齿顶圆直径d0mm50282齿根圆直径dmm41.25271.25f齿宽Bmm5545计算说明:1)齿轮强度计算公式中,载荷和几何参数是用小齿轮输出转矩T1和直径d1来表示19临沂大学机械工程学院 2014届本科毕业设计的,不论强度计算是针对小齿轮还是大齿轮,公式中的转矩,齿轮直径或齿数,都应是小齿轮的数值;根据db/d1求齿宽,b应是一对齿轮的工作宽度,为易于补偿齿轮轴向位置误差,应使小齿轮的宽度大于大齿轮宽度,因此大齿轮宽度取45mm;而小齿轮宽度取b1b(510)mm,齿宽数值应圆整;圆柱齿轮的传动系数。5.6轴的设计5.6.1 轴的结构和尺寸的确定当轴的支承距离未定时,无法由强度确定轴径,要用初步估算的办法,即按纯扭矩并降低许用扭转切应力确定轴径d,计算公式为:dA3Pnmm式中:P-轴所传递的功率,KW;n-轴的转速,r/min;A-由轴的许用切应力所确定的系数。轴常用材料及A的关系见下表6表6轴常用材料表Table6shaftmaterialtable材料Q235\20354540Cr、35NiSnA160~135135~118118~107107~98高速轴设计:结合实际情况,选用45钢,则取A的值为118d1A3Pd/n11832.816.9mm式(65)960考虑到键槽的影响,轴的直径增加 5%,则此时轴径应为:16.9mm1.05 17.7mm,取18mm,按照要求取d1-2=20,d1-3=25,d1-4=34,d1-5=30,d1-6=25;l1-1=32,l1-2=60,l1-3=17,l1-4=146,l1-5=10,l1-6=17。中间轴设计:d2A3P2/n211832.730.6mm式(66)154.8考虑到键槽的影响,轴的直径增加5%,则此时轴径应为:30.61.0531.74mm,取32mm,按照要求取d2-2=65,d2-3=50,d2-4=40,d2-5=32;l2-1=26,l2-2=81,l2-3=8l,2-4=42,l2-5=31低速轴设计:d3A3P3/n311832.6147.5mm式(67)40考虑到键图13 水平面(xy)的受力图20临沂大学机械工程学院 2014届本科毕业设计Fig.13 Level(xy)diagram图14 垂直面(xz)受力图Fig.14 Verticalsurface(xz)bytheattempt水平面(xy)受力图(见图13)垂直面(xy)受力图(见图14)画弯矩图水平面弯矩图(见图15)垂直面弯矩图(见图16)合成面弯矩图(见图17)图15 水平面弯矩图 Mxy/NmmFig.15 Horizontalbendingmomentdiagram图16 垂直面弯矩图 Mxz/Nmm21临沂大学机械工程学院 2014届本科毕业设计Fig.16 Verticalbendingmomentdiagram图17 合成弯矩图 Mxy/Nmmfig.17 resultantbendingmomentdiagram画轴转矩图轴受转矩转矩图(见图18)当量弯矩图。(见图19)许用应力许用应力值。用插入法由表16.3查得[0b]130MPa[1b]75MPa应力校正系[1b]750.58[0b]1130画当量弯矩图见图19当量转矩T0.5824172T14040Nmm当量弯矩在小齿轮中间截面处MIVM2(T)2158762131382MIV20607Nmm在大齿轮中间截面处MIIIM2(T)289132131382MIII15876Nmm5.8轴承盖上的螺纹强度计算很显然,该联结为受拉紧联结。有公式:c2F F Fc1 c2

式(68)式(69)校核轴颈式(76)22临沂大学机械工程学院 2014届本科毕业设计F0Fc1F式(77)c1c2F为螺栓总拉力;c1 为螺栓的相对刚度系数; F为螺栓的预紧力;F为工作载荷;F为剩余预c1 c2紧力;相对刚度系数的大小与螺栓和被联接件的材料、结构、尺寸 ,以及工作载荷作用位置、垫片等因素有关,可通过计算或试验求出。被联接件为钢铁零件时,一般可根据垫片材料不同采用下列数据:金属0.2~0.3;皮革0.7;铜皮石棉0.8;橡胶0.9。下列数据可供选择F时参考:F无变化时,F=(0.2~0.6)F;有变化时,FF=(0.6~1.0)F因为F所以F=(0.6~1.0)F=(99~165)N,即F0=165+165=330N=165N,强度校核公式::41.3F0[]2dc[][Sss]在这里选螺栓的材料为40Cr查《工程材料》s785MPa[Ss]为螺栓的许用拉应力安全系数,查《机械设计手册》表6.3取[Ss]=1.5;41.3F0dc 523.3

1.02mm由于安全起见,在这里选螺栓直径为6㎜.5.9键的选择和强度校核设计键联接时,通常被联接的材料,构造和尺寸已初步决定,联接的载荷也已求得。因此可以根据联接的结构特点,使用要求和工作条件来选择键的类型,再根据轴的直径从标准中选出键的截面尺寸,并参考毂长选出键的长度,然后用校合公式进行校合[11]。选择一般的普通平键(GB1096-79)根据挤压强度或耐磨性条件计算,求得联结所能传递的转矩为由于是静联结选取公式T41hld[p]h键的高度;l键的接触长度;d轴的直径[p]许用挤压应力见下表(单位MPa)表8材料的许用挤压应力Table8theallowablematerialextrusionstress联结的方式材料静载荷轻微冲击载荷冲击载荷静联结锻钢,铸钢125-150100-12060-90各键的校合见下表8表5键的校合键名H键的高度l键的接触d轴的直径]许用挤T14hld[p]长度[p压应力23临沂大学机械工程学院2014届本科毕业设计16281810075.6N·M295645100567.2N·M395645100567.2N·M4105655100697.3N·M经校合,各键符合要求。5.10联轴器的选择计算根据工作要求,动力传递过程中有冲击,所以选择弹性联轴器。根据需要传递的转矩和table名称TCKT型号弹性套柱销联轴69.63N·m2.527.85N·mTL6器弹性柱销联轴器1525.55N·m2.5610.22N·mHL4计算转矩TC KT式中T-公称转矩,由上面各轴的计算已经求出K-工作情况系数,由于是往返运输机,所以工作系数选 2.5。计算和选取如表9开式齿轮的设计开式齿轮传动的主要破坏形式是磨损,但目前还没有成熟的计算方法,所以通常在记入磨损的影响后,借用闭式齿轮传动强度计算公式进行条件性计算。开式齿轮传动只需计算齿根弯曲强度。6.1开式齿轮计算公式m2KTYYY21式(78)dz1[F]FaSa在选取相关系数时应该注意:同一对齿轮传动,大小齿轮的齿形系数应力修正系数和许用弯曲应力是不相同的。因此,应对大小齿轮的系数进行比较,并按两者中的较大值进行计算。模数应圆整成标准值。对于传递动力的齿轮,模数一般应大于1.5㎜-2㎜。[F]FlimYNYX式(79)SFmin式中 Flim为失效概率为1%时,试验齿轮的齿根弯曲疲劳极限, 由机械设计手册查得 Flim1 600MPa Flim2 450MPa8) SFmin弯曲疲劳强度的最小安全系数,由机械设计手册查得 SFmin 1.25YN弯曲疲劳强度计算的寿命系数,由机械设计手册查得24临沂大学机械工程学院 2014届本科毕业设计YN10.95YN20.9710)YX尺寸系数,由机械设计手册查得YX1.0故许用弯曲应力[F1]Flim1YN1YX6000.951456MPa式(80)S1.25[F2]Flim2YN2YX4500.971349MPa式(81)SFmin1.25m32KT1YYY323.656040002.191.80.682.05式(82)2[F]2349dz1FaSa0.3111为了补偿磨粒磨损,模数应增大10%即m=2.05×1.1=2.255由机械设计手册圆整取模数为2.256.3确定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论