版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
文档来源网络侵权删除希望此文档能祝您一臂之力重难点02探究规律问题探究规律型问题是中考数学中的常考问题,题目数量一般是一个题,各种题型都有可能出现,一般以选择题或者填空题中的压轴题形式出现,主要命题方式有数式规律、图形变化规律、点的坐标规律等。基本解题思路:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中规律,进而归纳或猜想出一般结论,最后验证结论的正确性。探索规律题可以说是每年中考的必考题,预计2021年中考数学中仍会作为选择题或填空题的压轴题来考察。所以掌握其基本的考试题型及解题技巧是非常有必要的。1)从简单的情况入手﹕从简单的情况入手﹕求出前三到四个结果,探究其规律,通过归纳猜想总结正确答案二.新定义型问题一般与代数、坐标、函数知识结合较多,常见的命题背景有:杨辉三角、等差数列、连续n个数的立方和、连续n个数的平方和、阶乘等。2)关注问题中的不变量和变量﹕在探究规律的问题中,一般都会存在变量和不变量(也就是常量),我们要多关注变量,看看这些变量是如何变化的,仔细观察变量的变化与序号(一般为n)之间的关系,我们找到这个关系就找到了规律所在.3)掌握一些数学思想方法规探索律型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.限时检测1:最新各地模拟试题(80分钟)1.(2023·河北邢台·一模)如图1,书架上按顺序摆放着五本复习书,现把最右边的文综抽出,放在英语与数学之间;再把最右边的理综抽出,放在数学与语文之间,得到图2,称为1次整理,接着把最右边的英语抽出,放在数学与理综之间,再把最右边的文综抽出,放在理综与语文之间,得到图3,称为2次整理……;若从图1开始,经过n次整理后,得到的顺序与图1相同,则n的值可以是(
)A.11 B.12 C.13 D.142.(2023·河北秦皇岛·统考一模)“幻方”最早记载于春秋时期的《大戴礼记》中,如图1所示,每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.现将填入如图2所示的“幻方”中,部分数据已填入,则的值为(
)A. B. C.50 D.3.(2023·山东济宁·校考一模)如图,在平面直角坐标系中,动点A从出发,向上运动1个单位长度到达点,分裂为两个点,分别向左、右运动到点、点,此时称动点A完成第一次跳跃,再分别从C、D点出发,每个点重复上边的运动,到达点、、,此时称动点A完成第二次跳跃,依此规律跳跃下去,动点A完成第2023次跳跃时,最左边第一个点的坐标是(
)A.B.C.D.4.(2023·重庆九龙坡·校考一模)下列图形都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆,…,则第⑦个图形中圆的个数为()A.67 B.92 C.113 D.1215.(2022·重庆南岸·校考模拟预测)有依次排列的个整式:,,,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:,,,,,则称它为整式串;将整式串按上述方式再做一次操作,可以得到整式串;以此类推.通过实际操作,得出以下结论:整式串为:,,,,,,,,;整式串共个整式;整式串的所有整式的和比整式串的所有整式的和小;整式串的所有整式的和为;上述四个结论正确的有(
)个.A. B. C. D.6.(2022·浙江丽水·统考一模)如图1所示,一块瓷砖表面有四条分割线,由分割线可构成一个正方形图案.图2由两块瓷砖铺成,分割线可构成3个正方形.图3由四块瓷砖铺成,分割线可构成9个正方形.若用十二块瓷砖铺成长方形,则由分割线可构成的正方形数最多是(
)A.33 B.34 C.35 D.367.(2022·浙江绍兴·校联考二模)数独顾名思义----每个数字只能出现一次,数独源自18世纪末的瑞士.数独盘面是个九宫,每一宫又分为九个小格,虽然玩法简单,但数字排列方式却千变万化,如图,在★处应填的数字是()A.2 B.6 C.7 D.88.(2022·河北唐山·统考一模)如图所示,下列每个图是由若干盆花组成的形如三角角形的图案,每条边(包括两个顶点)有盆花,每个图案花盆总数是,按此推断与的关系式为(
)A. B. C. D.9.(2022·湖北恩施·统考一模)如图叫做雪花曲线,它可以从一个等边三角形(图①)开始画:把一个等边三角形的每边分成相同的三段,再在每边中间一段上向外画出一个等边三角形,这样一来就做成了一个六角星(图②).然后在六角星的各边上用同样的方法向外画出更小的等边三角形,出现了一个有18个尖角的图形(图③).如此继续下去,就能得到分支越来越多的曲线(图④).继续重复上面的过程,图形的外边界逐渐变得越来越曲折、越来越长、图案变得越来越细致,越来越复杂,越来越像雪花、越来越美丽了.若图①中等边三角形的边长为1,则第4个图形的周长为(
)A.4 B. C. D.10.(2022·浙江绍兴·统考一模)现有一个方格的小型跳棋盘,将8枚棋子摆成如图的“中”字形状,并规定每一步可移动一枚棋子进入相邻空格中,或可将某枚棋子跳过邻格中的一枚棋子而进入随后的空格中,同时将被其跳过的这枚棋子从棋盘上移走.若最终棋盘上只剩下一枚棋子并停在标有“国”字的空格中,则最少需要移动的步数是(
)A.7 B.8 C.9 D.1011.(2022·重庆巴南·统考模拟预测)“杨辉三角”给出了展开式的系数规律(其中n为正整数,展开式的项按a的次数降幕排列),它的构造规则是:两腰上都是数字1,而其余的数则是等于它肩上的两个数之和.例如:展开式的项的系数1,2,1与“杨辉三角”第三排对应:展开式的项的系数1,3,3,1.与“杨辉三角”第四排对应;依此类推……判断下列说法正确的是(
)①“杨辉三角”第六排数字依次是:1,5,10,10,5,1;②当时,代数式的值为;③展开式中所有系数之和为;④当代数式的值为1时,或3.A.①②③ B.①②④ C.①③④ D.②③④12.(2023·海南省直辖县级单位·统考一模)用火柴棒按上图的方式摆出一系列图案,按这种方式摆下去,第n个图案所用的火柴棒的根数为_____.13.(2023·山东枣庄·校考模拟预测)观察图中每一个大三角形中白色三角形的排列规律,则第n个大三角形中白色三角形有(用含n代数式表示)________个.14.(2023秋·河南许昌·九年级校考期末)平面直角坐标系中,若干个半径为1,圆心角为的扇形组成的图形如图所示,点P从原点O出发,向右沿箭头所指方向做上下起伏运动,点P在直线上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,则2021秒时,点P的坐标是__________.15.(2022秋·山东临沂·九年级统考期中)若关于x的一元二次方程,当时,相应的一元二次方程的两根分别记为则的值为_________.16.(2022秋·河南信阳·九年级统考期中)如图,在正方形中,顶点,,点是的中点,与轴交于点,与交于点,将正方形绕点顺时针旋转,每次旋转,则第2023次旋转结束时,点的坐标为______.17.(2022秋·湖南岳阳·九年级校考阶段练习)如图,点在反比例函数()的图象上,点在y轴上,且,直线与双曲线交于点,,,则的坐标是_____.18.(2022·山东日照·校考二模)在直角坐标系中,直线与x轴交于点,以为边长作等边,过点作平行于x轴,交直线于点,以为边长作等边,过点作平行于x轴,交直线于点,以为边长作等边,则等边的边长是_____.19.(2022秋·广东惠州·九年级校考阶段练习)抛物线与直线的两个交点的横坐标分别是,,记,则代数式的值为_____.20.(2023·湖北孝感·校考一模)将从1开始的连续自然数按以下规律排列:若有序数对表示第n行,从左到右第m个数,如表示15,则表示2023的有序数对是___.21.(2023·山西晋中·统考一模)某公园内有一矩形步道,其地面使用相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道的地砖排列方式,其中步道上总共使用84个三角形地砖,那么连续排列的正方形地砖总共有______个.22.(2023·湖北咸宁·校联考一模)我国古代数学家杨辉发现了如图所示的三角形,后人称它为“杨辉三角”,它具有一定的规律性,从图中取一斜列数:1,3,6,10,15,,我们把第一个数记为,第二个数记为,第三个数记为,…第个数记为,则______.23.(2022·四川成都·统考二模)已知,定义,,,则______.24.(2022春·湖北十堰·九年级专题练习)元宵节,广场上要设计一排灯笼增强气氛,其中有一个设计由如图所示图案逐步演变而成,其中圆圈代表灯笼,n代表第n次演变过程,s代表第n次演变后的灯笼的个数.仔细观察下列演变过程,当时,__________.25.(2022·山东德州·统考二模)如图所示,将形状大小完全相同的“”按照一定规律摆成下列图形,第1幅图中“”的个数为,第2幅图中“”的个数为,第3幅图中“”的个数为,以此类推,的值为______.26.(2022·陕西宝鸡·统考二模)数学是研究化学的重要工具,数学知识广泛应用于化学领域,比如在学习化学的醇类分子式中,甲醇分子式为,乙醇分子式为,丙醇分子式为,设碳原子的数目为n(n为正整数),则醇类的分子式可以用式子______来表示.27.(2022·四川成都·统考二模)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2022时游戏结束,若报出的数是偶数,则该同学得1分,若报出的数是奇数,则该同学不得分.当报数结束时,甲同学的得分是__________分.28.(2022·陕西宝鸡·统考一模)如图所示的圆球三角垛自上而下,第1层1个,第2层个,第3层个,……如果图中三角垛共6层,则这个圆球三角垛的最下方一层的圆球个数为______个.29.(2023·山东青岛·统考模拟预测)【问题提出】相传古印度一座梵塔圣殿中铸有一片巨大的黄铜板,之上树立了3根宝石柱,如果将这64个金盘按上述要求全部从1柱移动到3柱,但是每次只能移动1个金属片,且较大的金属片不能放在较小的金属片上面.则至少需要移动多少次?【问题探究】为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.设是把n个金盘从1柱移动到3柱过程中的最少移动次数.探究一:当时,显然.探究二:当时,如图①所示.探究三:当时,如图②所示.探究四:当时,先用的方法把较小的3个金盘移动到2柱,再将最大金盘移动到3柱,最后再用的方法把较小的3个金盘从2柱移动到3柱,完成,即__________.探究五:当时,仿照“问题探究”中的方法,将6个金盘按要求全部从1柱移动到3柱,至少需要多少次?(写出必要的计算过程.)【结论归纳】若将x个金盘按要求全部从1柱移动到3柱,至少需要移动a次;将个金盘按要求全部从1柱移动到3柱,至少需要移动次__________(用含a的代数式表示).【问题解决】若将64个金盘按上述要求全部从1柱移动到3柱,至少需要移动__________次.【拓展延伸】若在原来游戏规则的基础上,再添加1个条件:每次只能将金盘向相邻的柱子移动(即:2柱的金盘可以移动到1柱或3柱,但1柱或3柱的金盘只能移动到2柱),则移动完64个金盘至少需要移动__________次.30.(2023·湖北随州·统考一模)观察一下等式:第一个等式:,第二个等式:,第三个等式:,……按照以上规律,解决下列问题(1)___________;(2)写出第五个式子:___________;(3)用含的式子表示一般规律:___________;(4)计算(要求写出过程):.31.(2022·山东青岛·统考一模)问题提出:将一根长度是(的偶数)的细绳按照如图所示的方法对折次(),然后从重叠的细绳的一端开始,每隔1厘米(两端弯曲部分的绳长忽略不计)剪1刀,共剪刀(的整数),最后得到一些长和长的细绳.如果长的细绳有222根,那么原来的细绳的长度是多少?问题探究:为了解决问题,我们可以先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:对折1次,可以看成有根绳子重叠在一起,如果剪1刀(如图①),左端出现了2根长的细绳,右端出现了根长的细绳,所以原绳长为;如果剪2刀(如图②),左端仍有2根长的细绳,中间有根长的细绳,右端仍有根长的细绳,所以原绳长为;如果剪3刀(如图③),左端仍有2根长的细绳,中间有根长的细绳,右端仍有根长的细绳,所以原绳长为;以此类推,如果剪刀,左端仍有2根长的细绳,中间有根长细绳,右端仍有根长的细绳,所以,原绳长为.探究二:对折2次,可以看成有根绳子重叠在一起,如果剪1刀(如图④),左端出现了2根长的细绳,两端共出现了根长的细绳,所以原绳长为;如果剪2刀(如图⑤),左端仍有2根长的细绳,中间有根长的细绳,两端仍有根长的细绳,所以原绳长为;如果剪3刀(如图⑥),左端仍有2根长的细绳,中间有根长的细绳,两端共有根长的细绳,所以原绳长为;以此类推,如果剪刀,左端仍有2根长的细绳,中间有根长的细绳,两端仍有根长的细绳,所以原绳长为.探究三:对折3次(如图⑦),可以看成有根绳子重叠在一起,如果剪刀,左端有2根长的细绳,中间有根长的细绳,两端有根长的细绳,所以原绳长为cm.(1)总结规律:对折次,可以看成有根绳子重叠在一起,如果剪刀,左端有根长的细绳,中间会有根长的细绳,两端会有根长的细绳,所以原绳长为.(2)问题解决:如果长的细绳有222根,根据以上探究过程可以推算出细绳可能被对折了次,被剪了刀,原来的细绳的长度是.(3)拓展应用:如果长的细绳有2024根,那么原来的细绳的长度是.32.(2022·山东青岛·青岛大学附属中学校考一模)【阅读理解】排列:从n个元素中选取m(m≤n)个元素,这m个元素称为一个排列,不同顺序视作不同排列,排列数量记作.组合:从n个元素中选取m(m≤n)个元素,这m个元素称为一个排列,不同顺序视作同一排列,组合数量记作.例如:(甲、乙),(乙、甲)是两种不同的排列,确实同一种组合.【问题提出1】在5个点中选取其中3个,有多少种排列?有多少种组合?【问题解决1】将5个点分别编号为“1”“2”“3”“4”“5”.(一)排列:(1)选取第1个点:如图①,从全部5个点中选取1个,有5种情况;(2)选取第2个点:如图①,从剩余4个点中选取1个,有4种情况;(3)选取第3个点:如图①,从剩余3个点中选取1个,有3种情况;综上所述,从5个点中任选3个点,共有5×4×3=60种排列,即=60.(二)组合:因为每个组合都包含了3个点,所有每3个点共有=3×2×1=6(种)排列.例如:包含“1”“2”“3”这3个点的组合,就有(1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1)共6种不同排列……像这样,每个组合都重复了6次(即次),即组合数=排列数的,故“在5个点中选取其中3个”对应组合数(种).(1)填空①=;②=(n≥3);③=(n≥2).(2)【问题提出2】在五边形中,每次取其中的3个顶点连接成三角形,可以构造多少个三角形?【问题解决2】解:问题可以抽象成在5个点中取其中3个,有多少种组合.∵(种),∴在5个点中取其中3个,有10种组合.即在五边形中,每次取其中的3个顶点连接成三角形,可以构造10个三角形.【问题延伸】在六边形中,每次取其中的4个顶点连接成四边形,可以构造多少个四边形?(请仿照【问题解决2】利用排列、组合的计算方法解决问题)解:【建立模型】在n(n≥3)边形中,每次取其中的m(m≤n)个顶点连接成m角形,可以构造个m边形.(3)【模型应用】在如图②所示的正方形网格图中,以格点为顶点的三角形共有个.限时检测2:最新各地中考真题(80分钟)1.(2022·湖北鄂州·中考真题)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是(
)A.8 B.6 C.4 D.22.(2022·新疆·中考真题)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是(
)A.98 B.100 C.102 D.1043.(2022·江西·中考真题)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是(
)A.9 B.10 C.11 D.124.(2022·云南·中考真题)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是(
)A.(2n-1) B.(2n+1) C.(n-1) D.(n+1)5.(2022·重庆·中考真题)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为(
)A.15 B.13 C.11 D.96.(2022·广东广州·中考真题)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第个图形需要2022根小木棒,则的值为(
)A.252 B.253 C.336 D.3377.(2022·广西玉林·中考真题)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是(
)A.4 B. C.2 D.08.(2022·四川广安·中考真题)如图,四边形ABCD是边长为的正方形,曲线DA1B1C1D1A2…是由多段90°的圆心角所对的弧组成的.其中,弧DA1的圆心为A,半径为AD;弧A1B1的圆心为B,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2022D2022的长是___________(结果保留π).9.(2022·黑龙江齐齐哈尔·中考真题)如图,直线与轴相交于点,与轴相交于点,过点作交轴于点,过点作轴交于点,过点作交轴于点,过点作轴交于点…,按照如此规律操作下去,则点的纵坐标是______.10.(2022·湖北恩施·中考真题)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为,且满足.则________,________.11.(2022·黑龙江牡丹江·中考真题)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线___上.12.(2022·湖北十堰·中考真题)如图,某链条每节长为,每两节链条相连接部分重叠的圆的直径为,按这种连接方式,50节链条总长度为_________.13.(2022·黑龙江大庆·中考真题)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.14.(2022·湖南怀化·中考真题)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是_____.15.(2022·四川德阳·中考真题)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,……由此类推,图④中第五个正六边形数是______.16.(2022·山东泰安·中考真题)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.17.(20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生态公园车位租赁与休闲娱乐服务协议4篇
- 2025年度艺术品代理合同终止及展览策划协议4篇
- 二零二五版跨行业企业战略合作保密及数据共享协议3篇
- 离婚2025年度子女监护权变更合同3篇
- 2025年农业大棚租赁与农产品质量安全检测服务协议4篇
- 2025年度园林景观虫害防治与植物保护合同4篇
- 家庭中医急救技能普及工作汇报
- 现代家庭教育的新篇章-从理论到操作的全面解读与实践探索
- 探索创新型康复治疗在医疗教育中的价值
- 科技小能手的培养计划观察与思考的融合
- 三级人工智能训练师(高级)职业技能等级认定考试题及答案
- 华为全屋智能试题
- 第三单元名著导读《经典常谈》知识清单 统编版语文八年级下册
- 第十七章-阿法芙·I·梅勒斯的转变理论
- 焊接机器人在汽车制造中应用案例分析报告
- 合成生物学在生物技术中的应用
- 中医门诊病历
- 广西华银铝业财务分析报告
- 无违法犯罪记录证明申请表(个人)
- 大学生劳动教育PPT完整全套教学课件
- 继电保护原理应用及配置课件
评论
0/150
提交评论