版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《两条直线的位置关系》(第1课时)教学设计教材分析本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程”,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标.本节内容在教材中处于非常重要的地位,起着承前启后的作用。因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。课标分析本节课的课程标准要求如下:理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(或等角)的余角相等、同角(或等角)的补角相等的性质。根据课标的要求,几何直观和推理能力的发展应该贯穿在整个数学学习过程中,理所当然的也应该在本章内容的学习过程中占主要地位。为此,本节课首先从反映生活中存在的两条直线位置关系的图片的观察入手,提出两条直线的两种位置关系(相交与平行),接着介绍对顶角的概念及其性质,然后学习补角、余角,使学生在直观情境中,认识相交线所成的角及其基本结论。学情分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。第一环节引入新知1.问题(1)我们在七年级上学期学习了直线和直线的表示方法,请在纸上画两条直线,并用字母表示。(2)与同伴交流,你们画的两条直线的有交点吗?(实物投影展示部分同学所画直线)(3)以上这些同学所画直线的位置情况可以分为几类?可追问,直线a、b真的既不相交、又不平行吗?讲评要点:(1)学生画的两条直线,若只有一种位置关系,教学时要注意引导:两条直线的位置,只有这一种关系吗?生活中没有其他情况吗?(2)若有学生将位置关系分为三类,则应引导学生复习直线的概念,使他们认识到a与b,c与d都是相交直线,从而对平面内两条直线的位置关系作出正确的分类:相交与平行。课件展示概念:一般地,在同一平面内,两条直线的位置关系有两种:和.定义分别为:。2.问题(1)你能举一些生活中近似看作两条直线相交或者平行的例子吗?(2)巩固练习:教师展示图片,学生快速回答几条直线的位置关系。活动目的:从复习直线的画法、表示方法入手,引导学生对所画直线的位置在观察的基础上进行分类,既可以复习上学期所学的直线的相关知识,又可以顺势引入直线位置的分类,在对结论明晰的基础上,学生通过对生活中直线相交和平行图片的观察,进一步深化和丰富了对问题的认识。数学来源于生活,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值的数学。充分利用现代化教学手段加强直观教学,引起学生学习的兴趣:通过师生互动,生生互动,增加学生之间的凝聚力,在相互探讨中激发学生学习积极性,提高学课堂效率。活动注意事项:在实际教学中,课堂上让学生充分发表自己的见解,清晰的表达自己的想法。学生的想法是丰富多彩的,教师应注意捕捉有效信息,从激励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对图2.1—1中,如果有学生提出a和m有何位置关系,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。如果学生的作品中已经包含了“巩固练习”的内容,教师可以恰当取舍。第二环节探究新知请先画一画:两条直线AB和CD,交于点O,再回答下列问题.请先画一画:两条直线AB和CD,交于点O,再回答下列问题.动手实践一.2.1—512342.1—512342.1—42.1—6问题1:观察2.1—4:∠1和∠2的顶点和边有什么特点?尝试用自己的语言描述对顶角的定义。问题2:剪子可以看成图2.1—4,那么剪子在剪东西的过程中,∠1和∠2还保持相等吗?∠3和∠4呢?请你用量角器量出你画的其中一对对顶角的度数,你又有何结论?与小组同学交流,你们的结论一致吗?请猜想对顶角之间的数量关系,能说明你猜想的正确性吗?试一试。归纳:对顶角相等问题3:下列各图中,∠1和∠2是对顶角的是()112121212ABCD问题4:如图2.1—6所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?活动目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,积累数学活动经验。设置问题1和问题2的目的是通过创设生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的活动素材,使学生在自主学习的过程中,学会对顶角的概念及其性质。同时进一步培养学生抽象几何图形进行建模的能力。而问题3和问题4是利用学习过的有关事实解决实际问题,一会数学在生活中的应用,进一步巩固了对顶角的概念及其性质,方法的不唯一激发了学生的兴趣。活动注意事项:创新意识的培养应贯穿教育的始终,因此教师应将活动过程充分放手给学生,同时培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。让学生在活动中积累经验,增加浓郁的学习氛围。11234动手实践二请同学们继续观察右图,图中∠1和∠3有何数量关系?注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。补角定义:一般地,如果两个角的和是1800注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。在图中还有哪些角互为补角呢?余角定义:如果两个角的和是900,那么称这两个角互为余角(complementaryangle)请同学们画出两个互为余角的角。教师补充提问:1.如果一个锐角的度数是α,那么它的余角和补角是多少呢?2.在黑板上画一个30°的角,同学们能画出它的余角吗?继续追问:1.余角与两个角的位置有关吗?那刚刚学习的对顶角与位置有关吗?一个角的对顶角是唯一的吗?余角和补角呢是唯一的吗?2.归纳:同角的余角或补角相等;等角的余角和补角相等。活动目的:通过动手画图,可以加深学生对概念的理解,在相互交流中,初步形成评价与反思的意识,在相互补充、相互学习中,体验“互补互余”仅仅表明了两个角的度量关系,并没有限制角的位置关系;在合作共赢中,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。活动注意事项:教师首先应关注全体学生是否积极思考?是否进行有效讨论?在巡视中,还应关注学生的画图是否合乎要求,要及时收集学生一些好的画法进行展示,关注学习上稍微落后的学生,提前给予点拨,在集体展示时给这部分同学展示的机会,可以极大的调动这部分同学的学习热情!巩固练习1:问题:下列说法中,正确的有。(填序号)①已知∠A=40º,则∠A的余角=500②若∠1+∠2=90º,则∠1和∠2互为余角。③若∠1+∠2+∠3=180º,则∠1、∠2和∠3互为补角。④若∠A=40º26′,则∠A的补角=139º34′⑤一个角的补角必为钝角。⑥一个锐角的补角比这个角的余角大900活动目的:问题3是针对学生易错题而改编的一组判断题,这种形式能引导学生逐步加深对余角、补角的概念及其性质的理解和掌握。同角或者等角的余角相等。同角或者等角的补角相等。活动注意事项:教师还应关注学生已经掌握了什么?具备了什么能力?还存在哪些不足?展示时给予合理的评价和强调。同角或者等角的余角相等。同角或者等角的补角相等。巩固练习2打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,ON与DC交于点O,∠DON=∠CON=900,∠1=∠22.1—72D2.1—72DCO134ANB2.1—8小组合作交流,解决下列问题:在图2.1—8中问题:哪些角互为补角?哪些角互为余角?活动目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。通过生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的数学活动,使学生在自主学习的过程中,掌握“同角或者等角的补角相等。”“同角或者等角的余角相等。”并能够用自己的语言说出简单推理。同时发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力。并在这个过程中,培养学生抽象几何图形进行建模的能力。本着面向全体的原则,从学生生活经验和熟悉的背景知识出发,通过创设情境串---问题串,极大的调动全体学生的参与意识,充分挖掘他们的潜能,给学生一个充分展示的舞台,以达到人人都能学好数学的目标!活动注意事项:学生应有足够的时间和空间经历观察、猜测、推理、验证等活动过程。本环节的三个问题是环环紧扣、层层递进提出来的,前一个问题为下一个问题作好铺垫。在学习的过程中,时刻不能忘记学生是主体,一切教学活动都应当从学生已有的认知角度出发,问题环节设计跨越性不能太强,让学生在不断的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,体验成功的喜悦;教师要充分发散学生的思维,鼓励学生各抒己见,敢于质疑;上课要渗透合情说理的方法,进一步培养学生的推理能力。OBOBACDE2.1—11问题1:如图2.1—11已知:直线AB与CD交于点O,∠EOD=900,回答下列问题:1.∠AOE的余角是;补角是。2.∠AOC的余角是;补角是;对顶角是。3.若∠AOC=25°,则∠AOE=,∠AOD=,∠BOD=,∠BOC=,∠BOE=。活动目的:通过问题串的巧妙设置,不仅高效率的复习了本节的知识点,而且让学生在开放的环境中畅所欲言,收获了一份自信!问题串的设置提高了学生的探索意识和创新意识的形成,激发了学生的学习兴趣和探究欲。活动的注意事项:鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,对出现的错误,一定进行积极的辨析,让学生学会解决的方法。第四环节总结反思归纳总结:你学到了哪些知识点?你学到了哪些方法?你还有哪些困惑?活动目的:本环节的设置使学生学会从系统的角度把握知识方法,努力使知识结构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归纳学习方法及解题方法的能力。锻炼学生组织语言及表达能力,经历与同伴分享成果的快乐过程。活动注意事项:教师一定让学生畅谈自己的切身感受,对于知识点的整合,更要有所思考,达到对所学知识巩固的目的。鼓励其他学生进行补充纠正,教师也应进行适时的点拨和强调。第五环节达标检测1.如图2.1-13,直线AB与CD交于点O,∠BOC=900,EF经过点O.(1)指出图中所有的对顶角;(2)图中那些角与∠AOE互余?互补?(3)若∠BOF=34°,试求出∠AOF,∠BOE,∠DOE的度数.OABCDE2.1—142.(挑战自我)如图2.1—14,点O在直线AB上,OC平分∠BOD,OE平分∠AOABCDE2.1—14活动目的:巩固本节课的知识点,检验学生的掌握程度。活动注意事项:要及时反馈,关注学生易错点,及时进行强调巩固。第六环节布置作业能力延伸基础题:1.书P42页习题2.1第1,2,3,4,5题CABCABDEFAABC2.1—9ABC2.1—10D问题2:①用你手中的三角板,画一个直角三角形,如图2.1—9.则∠A是∠B的。变式训练:在①的基础上,做∠CDA=900。如图2.1—10.则∠A的余角有哪几个?为什么?请找出互补的角,并说明理由。你还能提出哪些问题?试试看吧!2.1—12O2.1—12ODECBA问题2:如图2.1—12,点O在直线AB上,∠DOC和∠BOE都等于900.请找出图中互余的角、互补的角、相等的角,并说明理由。先独立探究,再小组交流。课后反思开放课堂激发潜能数学来源于生活,反之又服务于生活。本课时我遵循“开放”的原则,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,体会本节课的重要性和在生活中的广泛应用;通过课堂开放,可以让学生在直观有趣的问题情境中学到有价值的数学;学生搜集的信息是丰富多彩的,有利于教师给学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发了学生的潜能,使学生成为课堂的主人,提高了学生分析问题解决问题的能力!2.动手操作探究新知“几何直觉是增进数学理解力的很有效的途径,而且它可以使人增加勇气,提高修养。”通过动手画图,可以加深学生对知识的理解,这也是促使学生认真审题的重要方法。学生的画法千变万化,他们在相互交流中,很容易发现自己的问题,起到相互补充,相互学习的效果,可以轻而易举地掌握新知识。3.巧设问题串打造高效课堂我在教材提供的教学素材的基础上,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的学习环境。变式训练、一题多解的设置,题目由易到难,由简到繁,争取能让每一位学生都能领略到成功的喜悦!使学生思维分层递进,揭示概念的实质,不断完善新的知识结构,同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力;鼓励学生从多角度思考问题,充分激发学生的创新能力,使学生的思维多向开花,极大的调动学生学习数学的热情!4.注意事项。课堂上让学生充分发表自己的见解。学生搜集的信息是丰富多彩的,学生的思维也是百花齐放,教师应注意捕捉有效信息,从激励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应注重学生几何语言的培养,对课堂生成的问题,应予以重视,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。《两条直线的位置关系》(第1课时)学情分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。《两条直线的位置关系》(第一课时)效果分析根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的动手实践、独立探究、合作交流的学习方法,引导学生挖掘生活中的实际素材,能够列举一些具有合理性、科学性、创造性的实例,并辅以语言及书面的表达,使学生经历知识的生成过程,既加深了对所学知识的理解,也培养了他们的创新精神;注重了学生的情感、态度和价值观的培养。独立思考、学会思考是创新的核心;概括归纳得到猜想和规律,并加以验证,是创新的重要方法。本节课采用教师引导,学生自主探索和小组合作相结合的教学方式。利用多媒体和实物演示等教学设备辅助教学,充分调动学生的积极性,创设和谐、轻松的学习氛围。课程的设置注重以问题串的方式及变式练习,以激发学生探究、解决实际问题的兴趣,并在学生的探索、分析、交流、归纳、类比中突破难点,突出重点!整节课的设置渗透了数学的建模思想。学生是课堂的主人,教师是学生学习的组织者、促进者、合作者。本节课是一个不断提出问题、解决问题的思维过程,是为学生的自主探索与合作交流提供机会,搭建平台的过程。在教学过程中,教师扮演了引导、点评的角色,数学舞台上的“主演”是全体学生!本节课,所有的学生都得到了参与讨论和发表见解的机会,所有的结论和发现都是学生全员参与,热烈讨论,相互启发,思考探索获得的,充分尊重了学生的主体地位!充分利用了问题的情境,增加了教学过程的趣味性和实践性,激发了学生浓厚的学习兴趣,使学生产生了强烈的求知欲望,体验到了成功的喜悦!《两条直线的位置关系》(第1课时)教材分析本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程”,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标.本节内容在教材中处于非常重要的地位,起着承前启后的作用。因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。《两条直线的位置关系》(第一课时)评测练习1.如图2.1-13,直线AB与CD交于点O,∠BOC=900,EF经过点O.(1)指出图中所有的对顶角;(2)图中那些角与∠AOE互余?互补?(3)若∠BOF=34°,试求出∠AOF,∠BOE,∠DOE的度数.OABCDE2.1—142.(挑战自我)如图2.1—14,点O在直线AB上,OC平分∠BOD,OE平分∠AOABCDE2.1—14《两条直线的位置关系》(第1课时)课后反思开放课堂激发潜能数学来源于生活,反之又服务于生活。本课时我遵循“开放”的原则,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,体会本节课的重要性和在生活中的广泛应用;通过课堂开放,可以让学生在直观有趣的问题情境中学到有价值的数学;学生搜集的信息是丰富多彩的,有利于教师给学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发了学生的潜能,使学生成为课堂的主人,提高了学生分析问题解决问题的能力!2.动手操作探究新知“几何直觉是增进数学理解力的很有效的途径,而且它可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GB-Z 28820.3-2012聚合物长期辐射老化 第3部分:低压电缆材料在役监测程序》专题研究报告
- 《GBT 32789-2016 轮胎噪声测试方法 转鼓法》专题研究报告
- 《GB-T 25800-2010纺织染整助剂命名原则》专题研究报告
- 《MySQL数据库技术与应用》课件-7.3.1左外连接查询
- 2026年云南工程职业学院单招职业适应性考试题库及答案详解一套
- 《幼儿文学》课件-2.2儿歌特点
- 冷链物流路径优化信息咨询合同
- 中药材行业中药炮制师岗位招聘考试试卷及答案
- 2026年度全年各类安全工作计划
- 2025年低温原油高效破乳剂项目合作计划书
- 对人类教育四个发展阶段的探析
- 护理部竞聘副主任
- 《统计学-基于Excel》(第 4 版)课件 贾俊平 第5-9章 概率分布- 时间序列分析和预测
- 中国计量大学《文科数学》2021-2022学年第一学期期末试卷
- 信阳师范大学《伦理学》2021-2022学年第一学期期末试卷
- 中国普通食物营养成分表(修正版)
- 20道长鑫存储设备工程师岗位常见面试问题含HR常问问题考察点及参考回答
- 抖音ip孵化合同范本
- 小升初语文总复习《文章主要内容概括》专项练习题(附答案)
- DL-T606.5-2009火力发电厂能量平衡导则第5部分-水平衡试验
- python程序设计-说课
评论
0/150
提交评论