




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.2相似三角形的判定
平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似.定理1
两角分别相等的两个三角形相似。预备定理思考?对于△ABC和△A’B’C’,如果,∠A=∠A’,这两个三角形一定相似吗?A`B`C`ABC已知:如图△ABC和△
中,求证:△ABC∽△A`B`C`证明:在△ABC的边AB(或延长线)上截取AD=A′B′,A`B`C`ABCDE过点D作DE∥BC交AC于点E,则
∴
△ADE∽△ABC
∴△ADE≌△∽
定理2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简单地说:两边成比例且夹角相等的两个三角形相似.用数学符号表示:
类似于判定三角形全等的方法,我们还能不能通过三边来判断两个三角形相似呢?思考
是否有△ABC∽△A’B’C’?ABCC’B’A’三边对应成比例已知:如图△ABC和△
中,求证:△ABC∽△A`B`C`证明:在△ABC的边AB(或延长线)上截取AD=A′B′,A`B`C`ABCDE过点D作DE∥BC交AC于点E.
又
∴
△ADE∽△ABC,∴∵
∴.因此
.
∴△ADE≌△ABCC’B’A’∴△ABC∽△A’B’C’
定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简单地说:三边成比例的两个三角形相似.用数学符号表示:
要证明△ABC∽△A’B’C’,可以先作一个与△ABC全等的三角形,证明它△A’B’C’与相似.这里所作的三角形是证明的中介,它把△ABC△A’B’C’联系起来.运用32.图中的两个三角形是否相似?例1:根据下列条件,判断△ABC与△A’B’C’是否相似,并说明理由.(1)∠A=1200,AB=7cm,AC=14cm.∠A’=1200,A’B’=3cm,A’C’=6cm.∽△ABC与△A’B’C‘的三组对应边的比不等,它们不相似.要使两三角形相似,不改变的AC长,A’C’的长应改为多少?(2)AB=4cm,BC=6cm,AC=8cm,A’B’=12cm,B’C’=18cm,A’C’=21cm.运用2试说明∠BAD=∠CAE.ADCEB∴ΔABC∽ΔADE∴∠BAC=∠DAE∴∠BAC━∠DAC=∠DAE━∠DAC即∠BAD=∠CAE理解4:2=5:x=6:y4:x=5:2=6:y4:x=5:y=6:2要作两个形状相同的三角形框架,其中一个三角形的三边的长分别为4、5、6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?4562预备定理平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似.
定理2两边成比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 漳州职业技术学院《金融审计》2023-2024学年第二学期期末试卷
- 江西管理职业学院《中国文化概况》2023-2024学年第二学期期末试卷
- 西北民族大学《框架技术实验》2023-2024学年第二学期期末试卷
- 沈阳北软信息职业技术学院《计算机在环境工程中的应用》2023-2024学年第二学期期末试卷
- 郑州商学院《理论力学A》2023-2024学年第二学期期末试卷
- 内蒙古民族幼儿师范高等专科学校《主持艺术》2023-2024学年第二学期期末试卷
- 西北农林科技大学《云计算与虚拟化技术》2023-2024学年第二学期期末试卷
- 石家庄科技职业学院《教育学专题研究》2023-2024学年第二学期期末试卷
- 人教版初中历史与社会七年级上册 3.3.1耕海牧渔 教学设计
- 南昌职业大学《创业基础创新教育》2023-2024学年第二学期期末试卷
- 2024下半年上海事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 网络安全风险评估行业研究报告
- 新能源汽车充电设施安全检查记录表
- GB/T 38153.1-2024印刷技术测试印样的实验室制备第1部分:浆状油墨
- 2024高考物理考试大纲
- 《上市公司财务舞弊探究的国内外文献综述》5000字
- 2024年护师类之护士资格证考试题库
- 腰椎间盘突出症课件(共100张课件)
- 委托调解民事纠纷协议书合同
- 林学概论完整版本
- GB/T 44458.3-2024运动用眼部和面部保护第3部分:水面游泳用眼镜的要求和试验方法
评论
0/150
提交评论