




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年广东省东莞市湖景中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.观察下列各等式:55=3125,56=15625,57=78125,…,则52013的末四位数字是()A.3125 B.5625 C.8125 D.0625参考答案:A【考点】进行简单的合情推理.【分析】由上述的几个例子可以看出末四位数字的变化,3125,5625,8125,0625即末四位的数字是以4为周期的变化的,故2013除以4余1,即末四位数为3125.【解答】解:55=3125的末四位数字为3125,56=15625的末四位数字为5625,57=78125的末四位数字为8125,58=390625的末四位数字为0625,59=1953125的末四位数字为3125…,根据末四位数字的变化,3125,5625,8125,0625即末四位的数字是以4为周期的变化的,故2013除以4余1,即末四位数为3125.则52013的末四位数字为3125.故选A.2.抛物线y2=2px与直线2x+y+a=0交于A,B两点,其中A(1,2),设抛物线焦点为F,则|FA|+|FB|的值为() A.4 B.5 C.6 D.7参考答案:D【考点】抛物线的简单性质. 【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程. 【分析】把点A(1,2)代入直线2x+y+a=0,可得a=﹣4.把点A(1,2)代入抛物线y2=2px可得4=2p,解得p=2.把直线与抛物线方程联立,利用焦点弦长公式即可得出. 【解答】解:把点A(1,2)代入直线2x+y+a=0,可得2+2+a=0,解得a=﹣4. 把点A(1,2)代入抛物线y2=2px可得4=2p,解得p=2. 联立直线与抛物线,化为:x2﹣5x+4=0, 解得x=1或4, ∴|FA|+|FB|=1+4+2=7. 故选:D. 【点评】本题考查了直线与抛物线相交问题、焦点弦长公式,考查了计算能力,属于基础题.3.设函数,若是函数f(x)的极大值点,则实数a的取值范围是(
)A.
B.(-∞,1)
C.
[1,+∞)
D.参考答案:A,因为在处取极大值,故且在的左侧附近为正,在的右侧附近为负.当时,,此时,当时,,当时,故在处取极大值.当时,应为的较小的正根,故,故;当时,有一个正根和负根,因对应的二次函数开口向下,故正跟为即可,故时,总存在使得为的极大值点.综上,的取值范围为,故选A.
4.已知双曲线的标准方程为,为其左右焦点,若是双曲线右支上的一点,且的斜率分别为,若满足,则此双曲线的离心率为
(
)A.
B.
C.
D.参考答案:B5.已知AC、BD分别为圆O:x2+y2=4的两条垂直于坐标轴的弦,且AC、BD相交于点M(1,),则四边形ABCD的面积为()A.2 B.3 C. D.参考答案:A【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】求出|AC|,|BD|,代入面积公式S=?|AC||BD|,即可求出四边形ABCD的面积.【解答】解:由题意圆心O到AC、BD的距离分别为、1,∴|AC|=2=2,|BD|==2,∴四边形ABCD的面积为:S=?|AC|(|BM|+|MD|)=?|AC||BD|==2,故选:A.【点评】此题考查四边形ABCD的面积.解答关键是四边形面积可用S=?|AC||BD|来计算.6.复数的共轭复数是(
) A. B. C.1﹣i D.1+i参考答案:A考点:复数代数形式的混合运算.专题:计算题.分析:先利用两个复数的除法法则化简复数,再依据共轭复数的定义求出复数的共轭复数.解答: 解:复数===﹣i,∴复数的共轭复数是+i,故选
A.点评:本题考查两个复数代数形式的混合运算法则以及共轭复数的概念.7.一个球与一个正三棱柱的三个侧面和两个底面都相切,若棱柱的体积为,则球的表面积为
A.
B.
C.
D.参考答案:C8.“直线与双曲线有唯一交点”是“直线与双曲线相切”的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.不充分不必要条件参考答案:B9.定义在(0,+∞)上的可导函数f(x)满足f′(x)·x<f(x),且f(2)=0,则>0的解集为(
)A.(0,2)
B.(0,2)∪(2,+∞)
C.(2,+∞)
D.?参考答案:A略10.如图,小圆点表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以沿分开不同的路线同时传递,则单位时间内传递的最大信息量为(
)
A、12
B、13
C、14
D、15参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知{an}为等差数列,a2+a8=,则S9等于
.参考答案:6【考点】等差数列的前n项和;等差数列.【分析】由等差数列的求和公式可得:S9==,代入可得.【解答】解:由等差数列的求和公式可得:S9====6故答案为:612.已知函数,则
参考答案:13.命题“”为假命题,则实数的取值范围为_____________.参考答案:略14.如图,在梯形ABCD中,AB∥DC,AD⊥AB,AD=DC=AB=2,点N是CD边上一动点,则?的最大值为
.参考答案:8【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】以AB、AD所在直线分别为x、y,建立如图坐标系,求出相关点的坐标,即可求解?的表达式,确定最大值.【解答】解:以AB、AD所在直线分别为x、y,建立如图坐标系,可得A(0,0),B(4,0),C(2,2),D(0,2)N坐标为(x,2),(x∈[0,2]),?=(x,2)(4,0)=8x+2∈[2,8].则?的最大值为:8.故答案为:8.【点评】本题在一个直角三角形中求向量数量积的最大值,着重考查了直角梯形的性质、平面向量数量积的坐标运算等知识,属于中档题.15.不等式x2-(a+1)|x|+a>0的解集为{x|x<-1或x>1,x∈R,则a的取值范围为
.参考答案:16.已知双曲线的方程为,则它的离心率为______.参考答案:217.若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系式是____________________.参考答案:f(k+1)=f(k)+(2k+1)2+(2k+2)2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知在处取得极值,且在点处的切线斜率为.⑴求的单调增区间;⑵若关于的方程在区间上恰有两个不相等的实数根,求实数的取值范围.参考答案:解:⑴
;由题意,得,由得;的单调增区间是⑵由⑴知;;令;则,由得;当变化时,的变化情况如下表:
0+
极小值
当时,关于的方程在区间上恰有两个不相等的实数根的充要条件是,
19.解关于x的不等式:(x﹣1)(x+a)>0.参考答案:【考点】一元二次不等式的应用;一元二次不等式的解法.【分析】先由不等式:(x﹣1)(x+a)>0,得出其对应方程(x﹣1)(x+a)=0的根的情况,再对参数a的取值范围进行讨论,分类解不等式【解答】解:由(x﹣1)(x+a)=0得,x=1或x=﹣a,…当a<﹣1时,不等式的解集为{x|x>﹣a或x<1};当a=﹣1时,不等式的解集为{x|x∈R且x≠1};当a>﹣1时,不等式的解集为{x|x<﹣a或x>1}.…综上,当a<﹣1时,不等式的解集为{x|x>﹣a或x<1};当a=﹣1时,不等式的解集为{x|x∈R且x≠1};当a>﹣1时,不等式的解集为{x|x<﹣a或x>1}.…20.中学阶段是学生身体发育最重要的阶段,长时间熬夜学习严重影响学生的身体健康,某校为了解甲、乙两班每周自我熬夜学习的总时长(单位:小时),分别从这两个班中随机抽取6名同学进步调查,将他们最近一周自我熬夜学习的总时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周自我熬夜学习的总时长超过21小时,则称为“过度熬夜”.(Ⅰ)请根据样本数据,分别估计甲,乙两班的学生平均每周自我熬夜学习时长的平均值;(Ⅱ)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率;(Ⅲ)从甲班、乙班的样本中各随机抽取2名学生的数据,记“过度熬夜”的学生人数为X,写出X的分布列和数学期望E(X).参考答案:【考点】CH:离散型随机变量的期望与方差;B8:频率分布直方图;CB:古典概型及其概率计算公式.【分析】(1)分别求出甲、乙两班样本数据的平均值,由此能估计甲、乙两班学生每周平均熬夜时间.(2)从甲班的6个样本数据中随机抽取1个的数据为“过度熬夜“的概率是,由此能求出从甲班的样本数据中,有放回地抽取2个的数据,恰有1个数据为“过度熬夜“的概率.(3)X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)甲班样本数据的平均值为,由此估计甲班学生每周平均熬夜时间19小时.乙班样本数据的平均值为(11+12+21+25+27+36)=22,由此估计乙班学生每周平均熬夜时间为22小时.(2)∵从甲班的6个样本数据中随机抽取1个的数据为“过度熬夜“的概率是,∴从甲班的样本数据中,有放回地抽取2个的数据,恰有1个数据为“过度熬夜“的概率为:p=.(3)X的可能取值为0,1,2,3,4,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,∴X的分布列为:X01234PE(X)=+++3×+4×=.21.(12分)已知,解关于的不等式.参考答案:不等式可化为∵,∴,则原不等式可化为故当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为.22.(本小题满分12分)已知函数
,(Ⅰ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届江苏省大丰市新丰中学高三第一次模拟考试化学试卷含解析
- 图书角管理制度
- 2025年太阳能发电机组合作协议书
- 2025届浙江省杭州市塘栖中学高三最后一卷化学试卷含解析
- 2025年船用推进电机项目建议书
- 四年级数学(四则混合运算带括号)计算题专项练习与答案
- 一年级数学计算题专项练习1000题集锦
- 2025年探照灯抛物面反射镜和保护镜系列项目发展计划
- 2025年木板材加工项目建议书
- 戒毒学员出所前的心理教育
- 业务拓展经理招聘笔试题及解答(某大型国企)
- 医疗人员岗位责任制度
- 钢铁项目环评报告 - 14环境经济损益分析
- 钢铁项目环评报告 - 16项目建设合理性分析
- 中国汉服市场需求前景调研及未来发展趋势研究报告(2024-2030版)
- 2024 年煤矿防突考试题库附答案
- (正式版)QC∕T 1207-2024 燃料电池发动机用空气压缩机
- 舞台设备租赁合同样本
- 2024年陕西安康市宁陕县事业单位遴选29人历年【重点基础提升】模拟试题(共500题)附带答案详解
- 2024年四川内江中考数学试题及答案
- 基于STM32的室内空气质量监测系统的研究与实现
评论
0/150
提交评论