版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年河南省新乡市卫辉高级中学分校高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量其中,若则(
)
A.9 B. C. D.1参考答案:C略2.两条平行线3x+4y-12=0与ax+8y+11=0之间的距离为
(
)A.2.5
B.3.5
C.7
D.5参考答案:B3.函数对于任意的x∈(0,1]恒有意义,则实数a的取值范围为()A.a>0且a≠1
B.a≥且a≠1
C.a>且a≠1
D.a>1参考答案:B4.一个斜三棱柱,底面是边长为5的正三角形,侧棱长为4,侧棱与底面三角形两边所成的角都是60°,则这个斜三棱柱的侧面积是(
)
A.40
B.
C.
D.30参考答案:B略5.在△ABC中内角A,B,C所对各边分别为a,b,c,且,则角A=A.60° B.120° C.30° D.150°参考答案:A由余弦定理可知,所以。
6.已知是等差数列,,,则过点的直线的斜率是
(
)A.4
B.
C.-4
D.-14参考答案:A7.计算(
)A.-2
B.-1
C.0
D.1参考答案:C8.若,则点Q(cosθ,sinθ)位于()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:D9.定义在R上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则(
)A.f(-1)<f(3) B.f(0)>f(3)
C.f(-1)=f(-3)D.f(2)<f(3)参考答案:A略10.(2)原点到直线x+2y-5=0的距离为
()A.1
B.
C.2
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.函数y=ax-1+2(a>0,a≠1)一定经过的定点是(
)A.(0,1)
B.(1,1)
C).(1,2)
D.(1,3)参考答案:D略12.已知△ABC的内角B=60°,且AB=1,BC=4,则边BC上的中线AD的长为________。参考答案: 13.(3分)已知tan(α+β)=,tan(α﹣)=,那么tan(α+)=
.参考答案:﹣4考点: 两角和与差的正切函数.专题: 计算题;三角函数的求值.分析: 由两角差的正切函数公式可化简已知为=,从而将tan(α+)化为﹣即可代入求值.解答: 解:∵tan(α﹣)==,∴tan(α+)==﹣=﹣=﹣=﹣4.故答案为:﹣4.点评: 本题主要考查了两角和与差的正切函数公式的应用,属于基础题.14.已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是
.参考答案:[0,1]∪[9,+∞)【考点】函数的值域;一元二次不等式的应用.【专题】计算题.【分析】当m=0时,检验合适;
m<0时,不满足条件;m>0时,由△≥0,求出实数m的取值范围,然后把m的取值范围取并集.【解答】解:当m=0时,f(x)=,值域是[0,+∞),满足条件;当m<0时,f(x)的值域不会是[0,+∞),不满足条件;当m>0时,f(x)的被开方数是二次函数,△≥0,即(m﹣3)2﹣4m≥0,∴m≤1或m≥9.综上,0≤m≤1或m≥9,∴实数m的取值范围是:[0,1]∪[9,+∞),故答案为:[0,1]∪[9,+∞).【点评】本题考查函数的值域及一元二次不等式的应用,属于基础题.15.(5分)下面给出五个命题:①已知平面α∥平面β,AB,CD是夹在α,β间的线段,若AB∥CD,则AB=CD;②a,b是异面直线,b,c是异面直线,则a,c一定是异面直线;③三棱锥的四个面可以都是直角三角形.④平面α∥平面β,P∈α,PQ∥β,则PQ?α;⑤三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直;其中正确的命题编号是
(写出所有正确命题的编号)参考答案:①③④⑤考点: 命题的真假判断与应用.专题: 作图题;空间位置关系与距离.分析: 利用空间中直线与直线、直线与平面、平面与平面的位置关系,对①②③④⑤五个选项逐一判断即可.解答: ①∵AB∥CD,∴过AB与CD作平面γ,使得γ与α与β各有一条交线BC与AD,则四边形ABCD为平行四边形,故AB=CD,①正确;②a,b是异面直线,b,c是异面直线,如图,显然a,c相交,不是异面直线,故②错误;③三棱锥的四个面可以都是直角三角形,如图:PA⊥底面ABC,BC⊥AB,则BC⊥平面PAB,于是BC⊥PB,从而该三棱锥的四个面都是直角三角形,故③正确;④平面α∥平面β,P∈α,PQ∥β,由面面平行的性质得,PQα,故④正确;对于⑤,三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直,正确,下面进行证明:设三棱锥P﹣ABC中,PB⊥AC,PC⊥AB,求证:PA⊥BC证明:作PH⊥平面ABC,垂足H,分别连结AH、BH、CH,与AB、BC、AC分别交于F、D、E点,CH是PC在平面ABC的射影,且PC⊥AB,根据三垂线定理,CH(CF)⊥AB,同理可得,BH(BE)⊥AC,H是两条高线的交点,故H是三角形ABC的垂心,故AD⊥BC,AD是PA在平面ABC的射影,∴PA⊥BC.综上所述,①③④⑤正确.故答案为:①③④⑤.点评: 本题考查命题的真假判断与应用,着重考查空间直线间的位置关系、线面垂直的判定与性质、面面平行的性质及三垂线定理的应用,考查作图与推理分析的能力,属于中档题.16.若幂函数f(x)=xa的图像过点(2,4),则实数a=__________.参考答案:2将点坐标代入,∵,∴17.若函数是偶函数,当时,,满足的实数的个数为_____________个.参考答案:8略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=7,c=3,cosC=.(Ⅰ)求sinA的值;(Ⅱ)求△ABC的面积.参考答案:考点:余弦定理;正弦定理.专题:解三角形.分析:(Ⅰ)由平方关系和内角的范围求出sinC,由正弦定理求出sinA的值;(Ⅱ)由余弦定理求出边b的值,再把数据代入三角形面积公式求出△ABC的面积.解答: 解:(Ⅰ)由题意得,cosC=、0<C<π,所以sinC==,因为a=7,c=3,所以由正弦定理得:,则sinA===,(Ⅱ)由余弦定理得,c2=a2+b2﹣2abcosC,则9=49+b2﹣2×7b×,即b2﹣13b+40=0,解得b=5或b=8,所以△ABC的面积S=bcsinA=×5×3×=;或S=bcsinA=×8×3×=6.点评:本题考查正弦、余弦定理,平方关系,以及三角形面积公式,注意内角的范围,属于中档题.19.已知函数.(1)求证:是奇函数;(2)判断的单调性,并证明;(3)已知关于t的不等式恒成立,求实数t的取值范围.参考答案:解:(1)证明:由,得,∵,∴是奇函数;(2)解:的单调减区间为与没有增区间,设,则.∵,∴,∴,∴,∴,∴在上是减函数,同理,在上也是减函数;(3)是奇函数,∴,∴化为,又在上是减函数,∴,∴,即.
20.证明:对任意实数,不等式恒成立.参考答案:证明见解析【分析】利用分析法证明即可.【详解】要证明对任意实数,不等式恒成立,只需证明,只需证明,只需证明,只需证明,只需证明,而显然成立,所以对任意实数,不等式恒成立.所以原题得证.【点睛】本题主要考查分析法证明不等式,意在考查学生对该知识的理解掌握水平.21.(本小题满分12分)已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(,).(1)若||=||,求角α的值;(2)若·=-1,求的值.参考答案:解:(1)∵=(cosα-3,sinα),=(cosα,sinα-3),∴||=,||=.由||=||,得sinα=cosα.又∵α∈(,),∴α=.(2)由·=-1,得(cosα-3)cosα+sinα(sinα-3)=-1.∴sinα+cosα=.①又=2sinαcosα.由①式两边平方,得1+2sinαcosα=,∴2sinαcosα=.∴=.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 别墅改造施工项目协议
- 城市道路园林建设协议
- 眼镜租赁合同样本
- 市政工程招投标质量保证协议
- 税务局人员聘用协议范本
- 广告传媒公司副总经理招聘启事
- 地震灾区重建泥水施工协议
- 临时办公室租赁协议
- 影像制作服务协议
- 地铁站电梯井道建设协议
- 绿化养护续签合同申请书范文
- 教科(2024秋)版科学三年级上册2.6 我们来做“热气球”教学设计
- 山西省运城市2024-2025学年高二上学期10月月考英语试题
- 4.3《课间》 (教案)-2024-2025学年一年级上册数学北师大版
- 【班主任工作】2024-2025学年秋季安全主题班会教育周记录
- 2024-2030年街舞培训行业市场发展分析及发展趋势前景预测报告
- 橡胶坝工程施工质量验收评定表及填表说明
- 《2024版CSCO胰腺癌诊疗指南》更新要点 2
- +陕西省渭南市富平县2023-2024学年九年级上学期摸底数学试卷
- 2023年法律职业资格《客观题卷一》真题及答案
- 公司培训工作报告6篇
评论
0/150
提交评论