![高数曲线凹凸与图形_第1页](http://file4.renrendoc.com/view/06bf7b02a72c6547a7bc3739770cd809/06bf7b02a72c6547a7bc3739770cd8091.gif)
![高数曲线凹凸与图形_第2页](http://file4.renrendoc.com/view/06bf7b02a72c6547a7bc3739770cd809/06bf7b02a72c6547a7bc3739770cd8092.gif)
![高数曲线凹凸与图形_第3页](http://file4.renrendoc.com/view/06bf7b02a72c6547a7bc3739770cd809/06bf7b02a72c6547a7bc3739770cd8093.gif)
![高数曲线凹凸与图形_第4页](http://file4.renrendoc.com/view/06bf7b02a72c6547a7bc3739770cd809/06bf7b02a72c6547a7bc3739770cd8094.gif)
![高数曲线凹凸与图形_第5页](http://file4.renrendoc.com/view/06bf7b02a72c6547a7bc3739770cd809/06bf7b02a72c6547a7bc3739770cd8095.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高数曲线凹凸与图形第一页,共二十三页,编辑于2023年,星期二定义.
设函数在区间I上连续,(1)若恒有则称为I上的上凹函数;(2)若恒有则称连续曲线上内点的凹凸分界点称为拐点
.一、函数的凹凸与拐点为I上的上凸函数;自学定义,定理1、2.
第二页,共二十三页,编辑于2023年,星期二定理1*.(凹凸判定法)(1)在
I上则为I
上的上凹函数;(2)在
I上则为
I
上的上凸函数.证:利用一阶泰勒公式可得两式相加说明(1)成立;(2)设函数在区间I上有二阶导数证毕第三页,共二十三页,编辑于2023年,星期二例1.判断曲线的凹凸性.解:故曲线在是上凹的.说明:1)若在某点二阶导数为0,2)根据拐点的定义及上述定理,可得拐点的判别法如下:若曲线或不存在,但在两侧异号,则点是曲线的一个拐点.则曲线的凹凸性不变.在其两侧二阶导数不变号,第四页,共二十三页,编辑于2023年,星期二例2.求曲线的拐点.解:不存在因此点(0,0)
为曲线的拐点.凹凸第五页,共二十三页,编辑于2023年,星期二例3.求曲线的凹凸区间及拐点.解:1)求2)求拐点可疑点坐标令得对应3)列表判别故该曲线在及上向上凹,向上凸,点(0,1)
及均为拐点.凹凹凸第六页,共二十三页,编辑于2023年,星期二无渐近线.点M
与某一直线L的距离趋于0,二、曲线的渐近线定义.
若曲线
C上的点M
沿着曲线无限地远离原点时,则称直线L为曲线C
的渐近线.例如,双曲线有渐近线但抛物线或为“纵坐标差”第七页,共二十三页,编辑于2023年,星期二1.水平与铅直渐近线若则曲线有水平渐近线若则曲线有垂直渐近线例4.
求曲线的渐近线.解:为水平渐近线;为垂直渐近线.第八页,共二十三页,编辑于2023年,星期二2.斜渐近线斜渐近线若第九页,共二十三页,编辑于2023年,星期二例5.
求曲线的渐近线.解:所以有铅直渐近线及又因为曲线的斜渐近线.第十页,共二十三页,编辑于2023年,星期二三、函数图形的描绘步骤:1.确定函数的定义域,期性;2.求并求出及3.列表判别增减及凹凸区间,求出极值和拐点;4.求渐近线;5.确定某些特殊点,描绘函数图形.为0和不存在的点;并考察其对称性及周第十一页,共二十三页,编辑于2023年,星期二例6.
描绘的图形.解:1)定义域为无对称性及周期性.2)3)(极大)(拐点)(极小)4)第十二页,共二十三页,编辑于2023年,星期二例7.描绘方程的图形.解:1)定义域为2)求关键点第十三页,共二十三页,编辑于2023年,星期二3)判别曲线形态(极大)(极小)4)求渐近线为铅直渐近线无定义第十四页,共二十三页,编辑于2023年,星期二又因即5)求特殊点为斜渐近线第十五页,共二十三页,编辑于2023年,星期二6)绘图(极大)(极小)斜渐近线铅直渐近线特殊点无定义第十六页,共二十三页,编辑于2023年,星期二例8.描绘函数的图形.解:1)定义域为图形对称于
y
轴.2)求关键点3)判别曲线形态(极大)(拐点)第十七页,共二十三页,编辑于2023年,星期二(极大)(拐点)为水平渐近线5)作图4)求渐近线第十八页,共二十三页,编辑于2023年,星期二内容小结在I
上单调递增在I
上单调递减1.曲线凹凸与拐点的判别+–拐点—连续曲线上的凹凸分界点2.曲线渐近线的求法水平渐近线;垂直渐近线;
斜渐近线3.函数图形的描绘---按作图步骤进行第十九页,共二十三页,编辑于2023年,星期二思考与练习
1.曲线(A)没有渐近线;(B)仅有水平渐近线;(C)仅有铅直渐近线;(D)既有水平渐近线又有铅直渐近线.提示:作业P130
1(6);2(2);3;
5;7(3),(5)第二十页,共二十三页,编辑于2023年,星期二证明:当时,有证明:令,则是凸函数即
2.(自证)第二十一页,共二十三页,编辑于2023年,星期二拐点为
,凸区间是
,3.
曲线的凹区间是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB31T1110.3-食品和食用农产品全链条信息追溯 第3部分:数据接口规范编制说明
- 初级公司信贷-银行专业初级《公司信贷》名师预测试卷2
- 财务员工转正申请书
- 二级建造师之二建建设工程法规及相关知识题库【名师】 (一)
- 越冬物资申请书
- 手术室护士进修申请书
- DB2201-T 56-2023 市级肉牛核心育种场建设与管理规范
- DB2203-T 7-2024 容缺受理服务规范
- 2024-2025学年山东省青岛市城阳区高三上学期期中物理试卷(解析版)
- 2024-2025学年安徽省皖中名校联盟高三上学期第二次教学质量检测物理试卷(解析版)
- 职业素养的内容(含事例)课件
- 环卫市场化运营方案PPT
- 二年级下册综合实践活动说课稿-我是清洁小卫士 全国通用
- 人教版(2023)必修三 Unit 3 Diverse Cultures 单元整体教学设计(表格式)
- 电流互感器和电压互感器选型指南
- 大学生心理健康教育PPT完整全套电子教学课件
- 会务服务投标技术方案
- 中国传统图案大全
- 人间草木读书报告
- 市政污水管网深基坑拉森钢板桩支护专项施工方案
- 员工离职登记表(范本模板)
评论
0/150
提交评论