




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
同角三角函数关系式三三角函数sin^2(α)+cos^2(α)=1cos^2(a)=1-sin^2(a)tan^2(α)+1=1/cos^2(α)2sin^2(a)=1-cos2(a)cot^2(α)+1=1/sin^2(a)sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα13实用精品文档sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαABCA角A的对边比斜边,A正切等于对边比邻边,设α为任意角,终边相同的角的同一三角函数的值相等:精品文档三三角函数sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π-α)=sinαcos(π-α)=-cosα/13实用精品文档tan(π-α)=-tanαcot(π-α)=-cotαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotα3实用精品文档cot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα补充:6×9=54种的表格以及推导方法(定名法则和定号法f(β)sicotacosecs→nβsβnβtβcβcβf↘β↓360°ksinαcosαtanαcotαsecαcscα90°-cosαsinαcotαtanαcscαsecαα3实用精品文档α-sinαcotα-tanαcscααcosα-tanαcotα-secαα-sinαcosα-secααcosα-sinαcscααcosαcotα-tanαα-sinα-tanαcotα-sinα-tanαcotα定名法则90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”定号法则13实用精品文档将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”.(或为“奇变偶不变,符号看象限”2在Kπ/中如果K为奇数时函数名不变,若为偶数时函数名于正负号有可口诀;一全二正弦,三切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切为正,第四象限余弦为正。)比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα,cos(90°+α)=-sinα这个非常神奇,屡试不爽~还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosαtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)档sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]nsincostancotcos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)sin(3α)=3sinα-4sin^3α=cos(3α)=4cos^3α-3cosα=tan(3α)=(3tanα-tan^3α)/(1-3tan^2α)=tanαtan(π/3+α)tan(π/3-α)13实用精品文档tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαAsinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα-Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=-A/B)sin(a)=(2tan(a/2))/(1+tan^2(a/2))cos(a)=(1-tan^2(a/2))/(1+tan^2(a/2))tan(a)=(2tan(a/2))/(1-tan^2(a/2))sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))sinα=2tan(α/2)/[1+tan^2;(α/2)]cosα=[1-tan^2;(α/2)]/[1+tan^2;(α/2)]tanα=2tan(α/2)/[1-tan^2;(α/2)]a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)[其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)[其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a)cos30=sin60sin30=cos60tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^2sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0cosx+cos2x+...+cosnx=[sin(n+1)x+sinnx-sinx]/2sinx左边=2sinx(cosx+cos2x+...+cosnx)/2sinx=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx(积化和差)=[sin(n+1)x+sinnx-sinx]/2sinx=右边等式得证sinx+sin2x+...+sinnx=-[cos(n+1)x+cosnx-cosx-1]/2sinx左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)=-[cos(n+1)x+cosnx-cosx-1]/2sinx=右边等式得证三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^2a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)^2-sin^2a]=4sina(sin^260°-sin^2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa(cos^2a-cos^230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解读注册会计师考试标准化趋势对考生的影响试题及答案
- 运维优化面试题及答案
- 农艺师考试实战技能提升试题及答案
- 项目管理考试的直接实践要求试题及答案
- 花艺师考试中实战经验与理论知识的结合方式试题及答案
- 2025年并购重组市场的现状与挑战试题及答案
- 2024年项目管理考试新趋势试题及答案
- 证券从业资格证考试应试能力试题及答案
- 2024年项目管理考试模拟题目试题及答案
- 考生特质2025年注册会计师考试试题及答案分析
- 第一届山东省职业能力大赛济南市选拔赛制造团队挑战赛项目技术工作文件(含样题)
- 老干工作业务培训
- GB/T 44744-2024粮食储藏低温储粮技术规程
- 加工制作合同(储存罐)
- DB11T 594.2-2014 地下管线非开挖铺设工程施工及验收技术规程第2部分 顶管施工
- DB11∕T 1832.17-2021 建筑工程施工工艺规程 第17部分:电气动力安装工程
- 出租屋转租补充协议书范文范本
- 2024年海南省高考地理试卷(含答案)
- 2024年2个居间人内部合作协议书模板
- 【企业盈利能力探析的国内外文献综述2400字】
- 两位数加一位数和整十数(不进位) 1000题
评论
0/150
提交评论