版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE4解三角形1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫作解三角形。以下若无特殊说明,均设的三个内角的对边分别为,则有以下关系成立:(1)边的关系:,,(或满足:两条较短的边长之和大于较长边)(2)角的关系:,,,,,,,(3)边角关系:正弦定理、余弦定理以及它们的变形板块一:正弦定理及其应用1.正弦定理:,其中为的外接圆半径2.正弦定理适用于两类解三角形问题:(1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边;(2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解的可能),再计算第三角,最后根据正弦定理求出第三边【例1】考查正弦定理的应用(1)中,若,,,则_____;(2)中,若,,,则____;(3)中,若,,,则____;(4)中,若,则的最大值为_____。总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在中,已知、、(1)若为钝角或直角,则当时,有唯一解;否则无解。(2)若为锐角,则当时,三角形无解;当时,三角形有唯一解;当时,三角形有两解;当时,三角形有唯一解实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式1.余弦定理:在中,角的对边分别为,则有余弦定理:,其变式为:2.余弦定理及其变式可用来解决以下两类三角形问题:(1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;(2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决3.三角形的面积公式(1)(、、分别表示、、上的高);(2)(3)(为外接圆半径)(4);(5)其中(6)(是内切圆的半径,是三角形的周长)【例】在中,角的对边分别为,,(1)求的大小;(2)求的范围【例】(11全国2)设的内角的对边分别为,已知,,求【江西理】在中,角的对边分别是,已知(1)求的值;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度全国代理销售协议范本6篇
- 2024年商铺租赁与代理协议3篇
- 2024年度技术咨询合同(环保技术)3篇
- 2024年办公空间租赁协议样本3篇
- 2024年交易洽谈细则与协议签订指南版B版
- 2024年度设备安装项目协议细则一
- 2024年度网络安全防护服务外包合同
- 2024年合同法:单方面终止合同的合法性问题3篇
- 2024专业劳务派遣外包协议条款版B版
- 2024年康复医疗器械购买协议3篇
- 2020年中医执业医师考试真题含答案
- 全过程造价咨询工作合理化建议
- 基坑底抗渗流稳定性检算
- 胎膜早破的诊断与处理指南PPT幻灯片课件
- 非谓语动词专项练习180道附答案
- 单位工程施工组织设计施工方案
- 输电线路零序电流保护设计
- 竞选少先队大队委登记表(共2页)
- 上海市园林植物栽植技术规程
- 企业行为模拟试验报告2016
- 11.坦桑尼亚斜拉桥报价表
评论
0/150
提交评论