版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
自动控制系统的数学模型第一页,共八十六页,编辑于2023年,星期一§2-1动态微分方程式的建立§2-2传递函数§2-3系统动态结构图§2-4信号流图与梅逊公式教学内容:第二章
数学模型与系统的解第二页,共八十六页,编辑于2023年,星期一教学重点:数学模型的概念简单物理系统的动态微分方程的列写传递函数的概念;简单物理系统传递函数的列写;基本环节传递函数的特点。动态结构图的建立及等效变换求系统传递函数。信号流图的概念,梅逊公式求系统传递函数。第二章
数学模型与系统的解第三页,共八十六页,编辑于2023年,星期一一、数学模型的概念
①数学模型是描述系统特性或状态的数学表达式。它表达了系统输入输出及系统各变量之间的定量关系。是系统内部本质信息的反映。是系统内在客观规律的写照或缩影。(举例:电路模型)U1
cRU2
i§2-1动态微分方程式的编写一、数学模型的概念第四页,共八十六页,编辑于2023年,星期一②关于数学模型的几点说明
1.模型是系统内部本质信息的反映,这说明它不是实际过程的重现,并未考虑过程所有因素,而只是抓住主要的本质的因素。2.系统的本质特征与建模的目的密切相关.建模目的不同,系统的输入输出及结构就不同,本质信息也不同,模型自然也不同。3.模型的的精度与所考虑影响系统的因素有关,一般来说考虑的因素越多,模型越精确,当然也越复杂(工程实用性变差)。4.需正确处理好模型准确性与实用性(简化性)的矛盾,应紧紧围绕建模的目的做文章。一、数学模型的概念第五页,共八十六页,编辑于2023年,星期一③建模的目的1.可以定量分析系统动静态性能,看是否能满足生产工艺要求。2.可以用于定量的控制计算,对系统行为进行预测,并加以控制。控制精度与模型精度有关。3.利用模型可以进行有关参数的寻优。一、数学模型的概念第六页,共八十六页,编辑于2023年,星期一1.机理分析法(适用于机理已知的系统)
”白箱问题”2.测试法(实验法,经验法),适用于机理未知系统,”黑箱问题”。3.综合法,专门有一门课”系统辨识与参数估计”详细对此研究。灰箱问题④建模的方法一、数学模型的概念第七页,共八十六页,编辑于2023年,星期一
1.经典:微分方程、传递函数、动态结构图、信号流图、瞬态响应函数、频率特性。
2.现代:状态方程、状态空间表达式。本章重点以机理分析法为基础,介绍微分方程,瞬态响应函数和传递函数的建立。⑤数学模型的种类一、数学模型的概念第八页,共八十六页,编辑于2023年,星期一二、编写微分方程的前提条件
1.给定发生变化或出现扰动瞬间之前,系统应处于平衡状态,被控量各阶导数为零(初始为零)。2.在任一瞬间,系统状态可用几个独立变量完全确定。3.被控量及各独立变量原始平衡状态下工作点确定后,当给定变化或有扰动时,它们在工作点附近只产生微小偏差(增量)。所以微分方程也被称作在小偏差下系统运动状态的增量方程.编写微分方程是描述系统动态特性最基本的方法。
§2-1动态微分方程式的建立第九页,共八十六页,编辑于2023年,星期一三、系统微分方程式的建立
1、基本步骤(基于机理分析法)①确定系统的输入,输出量(体现建模目的)。
②根据系统遵循的物理,化学定律(机理)列出(各环节)原始方程式,提出必要假设,以简化模型(体现系统的本质特征)。
③列出原始方程式中的中间变量与其它因素关系式.④联立所有方程式,消去中间变量,使得到反映输入输出关系的微分方程.§2-1动态微分方程式的建立第十页,共八十六页,编辑于2023年,星期一
2、举例①RC无源网络U1
cRU2
i(1)输入为U1(t)输出为U2(t)(2)根据物理定理(欧姆、基尔霍夫等电路定理)列写原始方程式:(3)为中间变量§2-1动态微分方程式的建立第十一页,共八十六页,编辑于2023年,星期一(4)联立上两式,消去得:(一阶定常线性微分方程)若令时间常数则标准式为而这也恰为RL电路微分方程的形式,反映了这两个系统结构相同,内在本质是一致的。RLi§2-1动态微分方程式的建立第十二页,共八十六页,编辑于2023年,星期一②流体运动系统
A截面积(1)入水流量为输入,液位为输出(2)若假设液位不可压缩,根据质量守恒定律:其中为出水流量§2-1动态微分方程式的建立第十三页,共八十六页,编辑于2023年,星期一(3)根据流量公式为出口节流阀流量系数,当变化不大时,可视为只与阀门开度有关,若开度一定,为常数。(4)消去中间变量得:非线性微分方程§2-1动态微分方程式的建立第十四页,共八十六页,编辑于2023年,星期一③机械运动系统例:弹簧---质量---阻尼系统输入外力输出位移
阻尼系数,与运动方向相反§2-1动态微分方程式的建立第十五页,共八十六页,编辑于2023年,星期一四、非线性数学模型的线性化1.概念对于非本质非线性系统或环节,假设系统工作过程中,其变量的变化偏离稳态工作点增量很小,各变量在工作点处具有一阶连续偏导数,于是可将非线性函数(数模)在工作点的某一邻域展开成泰勒级数,忽略高次(二次以上)项,便可得到关于各变量近似线性关系,我们称这一过程为非线性系统(数模)的线性化。四、非线性数学模型的线性化第十六页,共八十六页,编辑于2023年,星期一2.数学描述设系统的输入为X(t),输出为Y(t),且满足Y(t)=f(x),其中f(x)为非线性函数。设t=t0时,x=x0,y=y0为系统的稳定工作点(x0,y0),四、非线性数学模型的线性化第十七页,共八十六页,编辑于2023年,星期一当|x-xo|很小时,忽略其二阶以上各项,得:在该稳定工作点处将f(x)泰勒展开为:即:四、非线性数学模型的线性化第十八页,共八十六页,编辑于2023年,星期一也即:是线性化模型例:将上例流体运动非线性方程线性化如:可将非线性特性在处线性化四、非线性数学模型的线性化第十九页,共八十六页,编辑于2023年,星期一即有:去掉即为线性化方程。
不难看出线性化方程与工作点有关,工作点不同,方程就不同。代入原方程得:四、非线性数学模型的线性化第二十页,共八十六页,编辑于2023年,星期一§2-2传递函数§2-2传递函数上例RC网络,得到系统的微分方程是:一、基本概念把上式在零初始条件下进行Laplace变换得:第二十一页,共八十六页,编辑于2023年,星期一整理得:这就是本系统的传递函数§2-2传递函数1.传递函数:线性定常系统,零初始条件下,系统输出的拉氏变换与输入的拉氏变换之比,称为该系统的传递函数(简称传函).
数学表达式为:第二十二页,共八十六页,编辑于2023年,星期一这由一般式推得:零初始条件下求Laplace变换得:§2-2传递函数第二十三页,共八十六页,编辑于2023年,星期一2.几点说明:①
传函只与系统本身参数有关,与外部输入无关②
输入给定时,输出响应完全决定于系统参数③
单位脉冲响应的拉氏变换即为系统传函④
微分方程需求出时域解才能分析性能指标而传函不必解出⑤传函所反映的输入输出关系直观§2-2传递函数第二十四页,共八十六页,编辑于2023年,星期一3.传函的几种数学表达式:①标准形式其中,为环节时间常数(可能有复重根)
为系统增益或开环放大倍数为系统纯零极点个数(无差阶数)§2-2传递函数第二十五页,共八十六页,编辑于2023年,星期一②零极点形式其中分子多项式根,系统零点(开环)分母多项式根,系统极点(开环)§2-2传递函数第二十六页,共八十六页,编辑于2023年,星期一二、典型环节传函分析
尽管组成控制系统环节的结构和机理各异,但其数学模型之间常具有相似性,控制原理的工作正是要把具体问题抽象成数学模型来研究它们的共性问题(内在普遍的规律),下面介绍的几个典型环节就是构成各复杂系统的基本单元,因此必须熟练掌握。
§2-2传递函数第二十七页,共八十六页,编辑于2023年,星期一(一)比例环节(放大环节)1、传函:2、特性:输入输出成正比,无惯性,不失真,无延迟.3、参数:K4、单位阶跃响应:输出按比值复现输入,无过渡过程。§2-2传递函数第二十八页,共八十六页,编辑于2023年,星期一5、实例:①分压器②运放③无弹性形变杠杆运动§2-2传递函数第二十九页,共八十六页,编辑于2023年,星期一(二)惯性环节1、传函:2、特性:有惯性、无失真、无延迟3、参数:K、T4、单位阶跃响应§2-2传递函数第三十页,共八十六页,编辑于2023年,星期一指数上升曲线平稳,无周期振荡--又称“非周期环节”5、特征参数意义:
①K表示稳态时输出输入比值或单位阶跃输入的稳态响应或§2-2传递函数第三十一页,共八十六页,编辑于2023年,星期一6、过渡过程时间,根据定义,为输出到达稳定值的95%(98%)所需的时间。ts=3T(ts=5T)7、实例①无源RC网络②单溶液槽③盲室压力系统④无套管热电偶等②T是环节动态参数,代表环节惯性大小,数值上等于单位阶跃输入,输出的初始速度等速上升到稳态值所需要的时间。或输出上升到63.2%的经历时间,当T很小时可用比例环节近似。§2-2传递函数第三十二页,共八十六页,编辑于2023年,星期一(三)积分环节
1、传函2、单位阶跃响应§2-2传递函数第三十三页,共八十六页,编辑于2023年,星期一4、实用中积分环节常用于大惯性环节初始段近似。常见于:①积分运算放大器②机械伺服机(阻尼器)3、等速上升曲线,积分速度为K。积分环节具有记忆功能,当输入撤销后,输出将保持不变,该特性常被用来改善系统的稳态特性。有偏差就有输出改变,直到偏差为零。§2-2传递函数第三十四页,共八十六页,编辑于2023年,星期一1.理想微分环节①传函(四)微分环节
§2-2传递函数第三十五页,共八十六页,编辑于2023年,星期一②特性:输出与输入的变化速度成正比,故能预示输出信号的变化趋势,常被用来改变系统的动态特性。③实际中测速发电机可近似看成微分环节,从物理角度讲该环节难以实现,因阶跃输入使输出为脉冲响应。常采用带有惯性的微分环节。2.实用微分环节①传函§2-2传递函数第三十六页,共八十六页,编辑于2023年,星期一②阶跃响应③阶跃响应开始时跳到一个有限值,接着衰减到起始值④特征函数:Kd微分增益,阶跃作用的跳跃值;T:阶跃响应时间常数,表示微分作用时间,越小越接近理想微分环节。1§2-2传递函数第三十七页,共八十六页,编辑于2023年,星期一⑤RC微分电路ⅱ机械或弹性反馈装置等。§2-2传递函数第三十八页,共八十六页,编辑于2023年,星期一(五)振荡环节
1.传函其中T,为振荡环节时间常数;K,放大倍数;为阻尼比;无阻尼自然振荡角频率。§2-2传递函数第三十九页,共八十六页,编辑于2023年,星期一其特征方程为2.阶跃响应当时,欠阻尼(一对共轭复根)§2-2传递函数第四十页,共八十六页,编辑于2023年,星期一阻尼振荡频率即输出曲线为频率为初相位故起名为“振荡环节”越小,振荡越剧烈;增大,逐渐平稳。§2-2传递函数第四十一页,共八十六页,编辑于2023年,星期一1.传函2.单位阶跃响应3.参数延迟时间(六)延迟环节§2-2传递函数第四十二页,共八十六页,编辑于2023年,星期一4.特性:能充分复现输入,只是相差,该环节是线性的,他对系统稳定性不利。然而过程控制中,系统多数都存在延迟环节,常用带延迟环节的一阶或二阶惯性环节作为系统的广义对象。5.近似§2-2传递函数第四十三页,共八十六页,编辑于2023年,星期一6.实例带钢厚度检测环节设取拉氏变换后输入输出§2-2传递函数第四十四页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图§2-4.系统动态结构图一、概念:系统方框图是系统中各环节的功能和信号流向的图解表示,它满足以下需求:①各个环节均以传函表示,并用箭头标出信号流向。是信号传递关系而非实际结构关系。②
环节的输入输出均以象函数表示③
信号沿箭头方向单向流动
这样通过结构图便能方便的求出系统传函。第四十五页,共八十六页,编辑于2023年,星期一画结构图的步骤二、建立系统动态结构图
§2-4.系统动态结构图
1、写出各个环节传函及其方框图2、以信号传递方向把个环节方框连接起来例:第四十六页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图
1、按电路理论求:+)(1)(112221112212122sUsCRCRCRsCCRRsCR++++=)()//()//()(1121112132121sURRRsUsCsCsCsC+++=第四十七页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图若要求以每个电路元件为环节画出方块图,再求传函,则须建立系统动态结构图。2、按步骤<1>有①②③第四十八页,共八十六页,编辑于2023年,星期一④⑤§2-4.系统动态结构图按步骤<2>有第四十九页,共八十六页,编辑于2023年,星期一例2三级RC电路§2-4.系统动态结构图第五十页,共八十六页,编辑于2023年,星期一三、环节的三种基本连接1、串联:环节按顺序相连,前一环节的输出为后一环节的输入§2-4.系统动态结构图W1(s)W2(s)Wn(s)W(S)X0(S)Xn(S)第五十一页,共八十六页,编辑于2023年,星期一环节串联的总传递函数等于各环节传递函数之积。§2-4.系统动态结构图4、并联并联连接的条件:①各环节输入信号相同;②各环节信号传递方向一致;③各环节输出信号迭加。W1(s)W2(s)abW(S)X1(S)X2(S)第五十二页,共八十六页,编辑于2023年,星期一a为分支点,b为综合点,通常“+”省略,只标“-”号N个环节并联的总传递函数等于各环节传递函数之和:如:用热电偶串联同测一个温度时,输入为同一个量(温度),输出为两个热电偶的热电势之和。§2-4.系统动态结构图第五十三页,共八十六页,编辑于2023年,星期一W1(s)W2(s)ab5、反馈连接将输出经反馈环节引回到输入端与输入信号相加(减)而构成闭环的连接方式W1(S)W2(S)W(S)Xr(S)Xc(S)§2-4.系统动态结构图反应内在信号传递关系,而非外在结构关系。目的是提高测量灵敏度。形串实并。第五十四页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图得等效传递函数:“-”对应正反馈“+”对应负反馈定义:①
正向通道
从输入端到输出端的信号传递通道称为正向通道(或前向通道),所有正向通道环节的总传递函数为正向通道传递函数。如W1(S)
第五十五页,共八十六页,编辑于2023年,星期一②
反馈通道从输出端到输入端的信号传递通道称为反馈通道,通道中的传递函数称为反馈通道传递函数。如W2(S)两种常用而特殊的负反馈:①单位负反馈:将输出1:1负反馈到输入端(全负反馈)W§2-4.系统动态结构图第五十六页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图②开环放大系数K很大W1(s)H(s)工业调节器便是由此原理实现的。W1(s)H(s)K第五十七页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图例:气动微分器如图此为比例+实用微分(PD)调节器。K>>11/65/6第五十八页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图四、方框图的等效变换和化简变位运算原则:变位前后输出信号应不变①连续的相加点可交换次序1.几种常见的等效变换第五十九页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图②
连续的分支点可变换次序③
分支点移动ⅰ由环节前移至环节后要在分支中串入具有相同传函的倒数的环节。第六十页,共八十六页,编辑于2023年,星期一④
相加点(综合点)移动ⅰ由环节前移至环节后须在移动支路串入具有相同传函环节。ⅱ由环节后移至环节前要在分支中串入相同传函的环节§2-4.系统动态结构图第六十一页,共八十六页,编辑于2023年,星期一ⅱ由环节后移至环节前须在移动支路串入具有相同传递函数倒数的环节。2.注意事项①
相加点和分支点之间一般不能直接互换次序。§2-4.系统动态结构图第六十二页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图②
移动相加点(或分支点)时,只能紧靠环节的输入、输出端,中间不能夹杂分支点(或相加点)。WWWWW1/W③移动相加点或分支点时要朝着有相加点或分支点的方向移动。第六十三页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图3.简化步骤:①
根据研究问题的需求确定出系统的输入输出;②
方块图中具有交叉反馈时,应先根据相加点或分支点移动原则解除交叉,并求出局部反馈的等效传递函数;③
简化到只有三种基本连接方式,最后求出总传函。第六十四页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图闭环传递函数:初始条件为零时,系统输出量的拉氏变换与输入量的拉氏变换之比。开环传递函数为:闭环传递函数为:开环传递函数:闭环系统反馈信号的拉氏变换与偏差信号的拉氏变换之比。五、系统开环传递函数,闭环传递函数Wg(S)Wf(S)Xr(S)Xc(S)Wg(S):正向通道传递函数Wf(S):反馈通道传递函数第六十五页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图举例W1W2W3H2H1W1W2W3H2/W1H1第六十六页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图W3H2/W1第六十七页,共八十六页,编辑于2023年,星期一§2-4.系统动态结构图开环传递函数:闭环传递函数:结论:具有交叉反馈单一前向通道的多回路系统闭环传递函数为:第六十八页,共八十六页,编辑于2023年,星期一§2-5.信号流图§2-5信号流图
通过对传递方块图的化简,我们可以求得系统的传递函数,但对于比较复杂的系统,结构图的化简也很复杂,容易出错。信号流图是表示系统各变量之间关系的另一种图式方法,利用他不需化简就可以直接获得系统的传函。第六十九页,共八十六页,编辑于2023年,星期一1.定义:信号流图是线性代数方程组的一种结构图表示。它是以变量为节点,以标有增益和信号流向的支路按线性方程组将节点连接起来形成的图形。一、信号流图及性质§2-5.信号流图2、举例第七十页,共八十六页,编辑于2023年,星期一§2-5.信号流图3、线性方程组一般表达式-因果式果因每个变量作为果只有一次4、术语节点:用来表示变量或信号的点,在图中用小圆点表示传输:每两个节点之间的增益。支路:连接两节点之间的定向线段,支路上标有传输值。第七十一页,共八十六页,编辑于2023年,星期一§2-5.信号流图输入节点(源节点):只有输出支路没有输入支路的节点。输出节点(汇节点):只有输入支路没有输出支路的节点。混合节点:输入输出支路都有的节点,加一单位传输支路可变为输出节点。第七十二页,共八十六页,编辑于2023年,星期一§2-5.信号流图通道(通路):从某一节点出发沿支路方向连续经过相连支路到达另一节点(或同一节点)的路径。开通道:如果通道与任意节点相交不多于一次,即称开通道。回路(回环):如果通道与节点相交不多于一次,且起点就是终点。第七十三页,共八十六页,编辑于2023年,星期一§2-5.信号流图不接触回环:没有任何公共节点的回环。自回环:从某一节点开始经一支路又回到该节点。前向通道:从输入节点到输出节点的开通道。前向通道增益:前向通道上各支路增益之积。回环增益:回环上各支路增益之积。第七十四页,共八十六页,编辑于2023年,星期一§2-5.信号流图⑤自回环①加法②乘法③分配消除混合节点④反馈5、简化法则及性质第七十五页,共八十六页,编辑于2023年,星期一§2-5.信号流图①
表达线性方程组的一种数学图形。②节点代表输出支路信号,他等于所有输入支路信息总和。③
支路表示一变量与另一边量之间关系。④信号流图不是唯一的,但可以与结构图相对应。
6.信号流图性质:7、应用系统模型由微分方程经拉氏变换代数方程信号流图结构框图第七十六页,共八十六页,编辑于2023年,星期一其中,Tk:第k条前向通道的总增益;
n:从输入节点到输出节点前向通道数;Δ:
信号流图的特征式,
§2-5.信号流图二、梅逊(Meson)公式
计算输入、输出总增益的梅逊公式:第七十七页,共八十六页,编辑于2023年,星期一§2-5.信号流图Δk:第k条前向通道特征余子式,即在特征式Δ中除去与第k条前向通道相接触的各回环增益(置零);接触是指某回环与其他回环(或前向通道)至少有一个公共节点。其中,ΣL1:所有不同回环增益之和;ΣL2:每两个互不接触回环‘增益乘积之和;
ΣLm:每m个互不接触回环增益乘积之和;第七十八页,共八十六页,编辑于2023年,星期一§2-5.信号流图关键问题1)正确识别所规定的输入输出节点之间的所有前向通道Tk;2)中是对从输入节点到输出节点之间的所有可能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 维修物联网-洞察分析
- 关于志愿者的倡议书范文800字(8篇)
- AI技术在医疗领域的未来展望与挑战
- 从宝洁的成功看企业战略管理的重要性
- 农产品跨境电商营销策略
- 以乐启智家庭中的音乐启蒙实践与反思
- 从教育角度看小学生阅读习惯的培养
- 创新型学校基础设施设计与管理案例
- 2025订购物品合同纠纷上诉状
- 创新医疗技术下的高血压早期识别及预防教育探讨研讨会重点指引
- 2024年河北中考语文试题及答案
- HG/T 22820-2024 化工安全仪表系统工程设计规范(正式版)
- 偏微分方程智慧树知到期末考试答案章节答案2024年山东大学(威海)
- 村集体经济入股分红协议书
- 新时代大学生劳动教育智慧树知到期末考试答案章节答案2024年黑龙江农业经济职业学院
- MOOC 计量经济学-西南财经大学 中国大学慕课答案
- MOOC 高等数学(上)-西北工业大学 中国大学慕课答案
- 毛泽东思想概论智慧树知到期末考试答案2024年
- 中医诊所消防应急预案
- 2024版国开电大法学本科《国际经济法》历年期末考试总题库
- 2024年学前儿童科学教育知识题库及答案(含各题型)
评论
0/150
提交评论