版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《因式分解法(第1课时)》课堂实录一、教学目标1.会用因式分解法解一元二次方程,领会因式分解法的实质是降次.2.培养式的变形能力,发展符号感.二、教学重点和难点1.重点:用因式分解法解一元二次方程.2.难点:式的变形.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3)解:整理,得.a=,b=,c=.b2-4ac==>0.,,.(二)尝试指导,讲授新课师:刚才我们解了一个方程,我们是怎么解的?(稍停)我们先整理得到了方程2x2-3x=0(边讲边板书:2x2-3x=0),然后用公式法求出两个根.师:(指2x2-3x=0)除了用公式法,大家想一想,还有别的更简单的方法解这个方程吗?(让生思考一会儿)师:(指2x2-3x=0)我们把这个方程的左边分解因式(板书:因式分解,得),得到x(2x-3)=0(边讲边板书:x(2x-3)=0).师:(指准x(2x-3)=0)x乘以2x-3等于0,这说明什么?生:……(多让几名同学发表看法)师:(指准x(2x-3)=0)x乘以2x-3等于0,说明x=0或者2x-3=0(板书:于是得x=0或2x-3=0).师:(指准板书)这样我们通过因式分解把一元二次方程转化成了两个一元一次方程.接下来解这两个一元一次方程,由x=0得到x1=0(板书:x1=0),由2x-3=0,得到(板书:).师:(指板书)用这种方法解出的结果与用公式法解出的结果是一样的,但显然用这种方法解更简单.大家再看一看,用这种方法解方程,哪一步是关键?生:因式分解.(多让几名同学回答)师:因式分解是这种方法的关键,那么这种方法应该叫做什么法?生:(齐答)因式分解法.(师板书课题:22.2.3因式分解法)师:通过因式分解来解一元二次方程,这种方法叫做因式分解法.下面我们用因式分解法再来解几个一元二次方程.(师出示例题)例用因式分解法解下列方程:(1)x(x-2)+x-2=0;(2)5x2-2x-=x2-2x+;(3)(2y+3)2=(y-1)2.(师边讲解边板书,(1)(2)题解题过程如课本第39页所示,(3)题解题过程如下)(3)移项,得(2y+3)2-(y-1)2=0.因式分解,得(3y+2)(y+4)=0.于是得3y+2=0或y+4=0,,y2=-4.师:我们用因式分解法做了几个题,通过做题,哪位同学会归纳用因式分解法解一元二次方程的步骤?(让生思考一会儿再叫学生)生:……(让两名学生归纳)师:(指准例(3)题)用因式分解法解一元二次方程,先把方程右边移到左边,再把左边分解因式,化为两个一次式的乘积等于0的形式,然后得到两个一元一次方程,最后分别解这两个一元一次方程,得到两个根.师:按这样的步骤,下面同学们自己做几个练习.(三)试探练习,回授调节2.完成下面的解题过程:用因式分解法解方程:x2=2x.解:移项,得.因式分解,得.于是得或,x1=,x2=.3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.(四)归纳小结,布置作业师:本节课我们学习了用因式分解法解一元二次方程,因式分解法是一种比较简单的解方程的方法,它是通过因式分解把一元二次方程转化为一元一次方程,从而达到降次的目的(边讲边板书:降次).解一元二次方程的基本思路是什么?(稍停)基本思路是降次.配方法是通过配方来降次,因式分解法是通过因式分解来降次.降次是解一元二次方程的基本思路,这一点还希望同学们能好好理解,好好体会.(作业:P43习题6)四、板书设计(略)因式分解法2x2-3x=0例因式分解,得x(2x-3)=0于是得x=0或2x-3=0,x1=0,x2=因式分解法(第2课时)一、教学目标1.通过基本训练,复习巩固解一元二次方程的四种方法(直接开平方法、配方法、公式法、因式分解法).2.会选择适当的方法解一元二次方程.二、教学重点和难点1.重点:复习巩固四种方法.2.难点:选择适当的方法解一元二次方程.三、教学过程(一)基本训练,巩固旧知1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、.2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0;解:原方程化成.开平方,得,x1=,x2=.(2)用配方法解方程:3x2-x-4=0;解:移项,得.二次项系数化为1,得.配方,.开平方,得,x1=,x2=.(3)用公式法解方程:x(2x-4)=2.5-8x.解:整理,得.a=,b=,c=.b2-4ac==>0.,x1=,x2=.(4)用因式分解法解方程:x(x+2)=3x+6.解:移项,得.因式分解,得.于是得或,x1=,x2=.(二)尝试指导,讲授新课(师出示下表)直接开平方法配方法公式法因式分解法过程简单复杂较简单简单适用某些所有所有某些师:前面我们学习了解一元二次方程的四种方法,哪四种方法?(指准表)直接开平方法、配方法、公式法、因式分解法.这四种方法各有各的特点,这个表反映了它们各自的特点.师:(指准表格)直接开平方法解方程的过程简单,但这种方法只能用于解某些一元二次方程.譬如,3x2-5=0,2(x+1)2=7(边讲边板书),这样的方程可以用直接开平方法来解.师:(指准表格)配方法解方程过程最复杂,但这种方法适用于所有的一元二次方程,也就是说,任何一元二次方程都可以用配方法来解.师:(指准表格)公式法解方程的过程比较简单,而且这种方法适用于所有的一元二次方程.师:(指准表格)因式分解法解方程的过程简单,但这种方法和直接开平方法一样只能用于解某些一元二次方程.譬如,x2+6x=0,x2=(2x+1)2(边讲边板书方程),这样的方程可以用因式分解法来解.师:知道了四种方法各自的特点,下面我们来看一道例题.(师出示例题)例指出下列方程用哪种方法来解比较适当:(1)3x(x+2)=5(x+2);(2)x2+3x-6=0;(3)2(x-4)2-5=0.师:解一元二次方程有四种方法,现在要你指出这几个方程用哪种方法来解比较适当,请大家自己先考虑考虑.(让生思考一会儿)师:谁来说说你的想法?生:……(多让几名同学发表看法,最好要说出理由)师:(指准表格)在四种方法中,用直接开平方法、因式分解法解方程最简单,所以先要看能不能用这两种方法来解.如果不能用直接开平方法来解,也不能用因式分解法来解,就要用公式法来解.因为公式法能解所有的一元二次方程,它是“万能”的,而且比较简单.师:根据这样的思路,我们来看这道例题.师:(指例(1)题)这个方程能用直接开平方法解吗?(稍停)不能.能用因式分解法解吗?(稍停)能(板书:解:(1)因式分解法).师:(指例(2)题)这个方程能用直接开平方法解吗?(稍停)不能.能用因式分解法解吗?(稍停)不能.所以要用公式法解(板书:(2)公式法).师:(指例(3)题)这个方程用什么方法解合适?生:(齐答)直接开平方法(生答师板书:(3)直接开平方法).师:这个例题做完了,做完了例题有的同学可能会提出一个问题,什么时候用配方法解方程?(稍停)老师要告诉大家,因为用配方法解方程最复杂,所以我们一般不用配方法解方程.师:有的同学可能会接着问:既然不用配方法解方程,为什么要学配方法?(稍停)在四种方法中,公式法最有用,什么方程都可以用公式法来解,而且比较简单,但求根公式是怎么推导出来的?(稍停)求根公式是用配方法推导出来的,不学配方法哪有公式法?所以我们说,公式法最有用,配方法最基本,而直接开平方法、因式分解法最简单,但这两种方法只适用于某些特殊的一元二次方程.(三)试探练习,回授调节2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.(四)归纳小结,布置作业师:本节课我们复习了解一元二次方程的四种方法,这四种方法各有各的特点,但它们的基本思路是相同的.相同的思路是什么?(稍停)相同的思路是把一元二次方程化为一元一次方程,也就是降次(板书:降次).不管用什么方法,降次是解一元二次方程的基本思路.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.四、板书设计表格例3x2-5=02(x+1)2=7x2+6x=0x2=(2x+1)2《降次——解一元二次方程》疑难分析1.通过配成完全平方形式来解一元二次方程的方法,叫做配方法.可以看出,配方是为了降次,把一个一元二次方程转化成两个一元二次方程来解.2.一元二次方程的根由方程的系数a,b,c确定.因此,解一元二次方程时,可以先将方程化为一般形式,当,将a,b,c代入式子就得到方程的根.这个式子就叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.由求根公式可知,一元二次方程最多有两个实数根.3.用因式分解的方法使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0.从而实现降次,这种解法叫做因式分解法.4.配方法要先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求根公式;因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各个一次式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程.总之,解一元二次方程的基本思想是:将二次方程化为一次方程,即降次.例题选讲用配方法解下列方程:(1)(2)解:(1)移项,得配方由此可得.(2)移项,得二次项系数化为1,得配方即∴∴评注:运用配方法解一元二次方程,先移项把含有未知数的项移到方程左边,常数项移到方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级现代文语文阅读训练集
- 高考语文文言文阅读分类训练:历史事件类
- 2025年人造板类家具项目合作计划书
- 2024年重楼种苗采购与销售专项协议版B版
- KTV装饰装修音响系统设备合同
- 家居建材市场宽带施工合作协议
- 养殖场品牌运营合同范本
- 环卫车辆运输安全管理办法
- 2024年高科技合同范例3篇
- 招投标代理公司供应商评估准则
- 矿井轨道质量标准及架线维护规程
- 打字测试评分标准
- VBOXTools软件操作手册
- 外研版(三年级起点)五年级上册重点知识点复习
- 2023-2024学年四川省凉山州小学数学六年级上册期末自测试卷
- 2023年报告文学研究(自考)(重点)题库(带答案)
- GB/T 18691.5-2021农业灌溉设备灌溉阀第5部分:控制阀
- 安全带管理登记台帐
- 第26课《诗词五首-渔家傲》课件【教材精讲精研】部编版语文八年级上册
- 湖南省高等教育自学考试 毕业生登记表
- 湖北省武汉市江汉区2021-2022七年级初一上学期期末数学试卷+答案
评论
0/150
提交评论