




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
---------------------------------精选公文范文--------------------------一元二次方程解法(配方法)教学设计各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢一元二次方程的解法(配方法)教学设计教学目标:(一)知识与技能:1、理解并掌握用配方法解简单的一元二次方程。2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。(二)过程与方法目标:1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。(三)情感,态度与价值观----------------精选公文范文----------------1---------------------------------精选公文范文--------------------------启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。教学重点、难点:重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。难点:通过配方把一元二次方程转化为(x+m)2=n的形式。教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境——建立数学模型——巩固与运用——反思、拓展”来展示教学活动。教学过程教学过程教学内容学生活动设计意图一复习旧知用直接开平方法解下列方程:(1)9x2=42=0----------------精选公文范文----------------2---------------------------------精选公文范文--------------------------总结:上节课我们学习了用直接开平方法解形如(x+m)2=n的方程。二创设情境,设疑引新在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。例:小明用一段长为20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?三新知探究1提问:这样的方程你能解吗?x2+6x+9=0①2、提问:这样的方程你能解吗?x2+6x+4=0②思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?归纳总结配方法:通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配方法。配方法的依据:完全平方公式配方法的关键:给方程的两边同时加上一次项系数一半的平方----------------精选公文范文----------------3---------------------------------精选公文范文--------------------------点拨:先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。四合作讨论,自主探究1、配方训练x2+12x+=2x2-12x+=2x2+8x+=2x2+mx+=2强调:当一次项系数为负数或分数时,要注意运算的准确性。2、将下列方程化为(x+m)2=n的形式并计算出X值。(1)x24x+3=0(2)x2+3x1=0解:X2-4X+3=0移向:得X2-4X=-3配方:得即:(X-2)2=1开平方,得:X-2=1或X-2=-1所以:X=3或X=1----------------精选公文范文----------------4---------------------------------精选公文范文--------------------------方程(2)有学生完成。3、巩固训练:课本55页随堂练习第一题。五小结1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n的形式,然后两边开平方就可以得到方程的解。2、用配方法解二次项系数为一的一元二次方程的一般步骤:(1)移项(常数项移到方程右边)(2)配方(方程两边都加上一次项系数的一半的平方)(3)开平方(4)解出方程的根六布置作业习题第1,2题两个学生黑板上那解题,剩余学生练习本上计算。学生观看,思考老师提出的问题,得到:设该矩形的长为x米,依题意得x=9----------------精选公文范文----------------5---------------------------------精选公文范文--------------------------但是发现所列方程无法用直接开平方法解。于是引入新课。学生通过观察发现,方程的左边是一个完全平方式,可以化为2=0,然后就可以运用上节课学过的直接开平方法解了。方程②的左边不是一个完全平方式,于是不能直接开平方。学生陷入思考,给学生充分思考、交流的时间和空间。在学生思考的时候,老师引导学生将方程②与方程①进行对比分析,然后得到:x2+6x=4x2+6x+9=4+9(x+3)2=5从而可以用直接开平方法解,给出完整的解题过程。在学生充分思考、讨论的基础上总结:配方时,常数项为一次项系数的一半的平方。检查学生的练习情况。小组合作交----------------精选公文范文----------------6---------------------------------精选公文范文--------------------------流。学生归纳后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有机化学 有机上期末试卷(含答案)学习资料
- 2025风力发电项目合同
- 山东省东营市利津县2024-2025学年下学期期中考试七年级道德与法治试题及答案 山东省东营市利津县2024-2025学年下学期期中考试七年级道德与法治试题
- 2025粮食收购销售合同协议书范本
- 2025办公室改造工程(承包)合同承包电路改造合同
- 2025综合装修合同范本
- 2025劳动合同集锦范文
- 2025烘焙技术合作协议合同
- 2025BT项目合同范本
- 2025年企业合同模板集锦
- (正式版)JTT 421-2024 港口固定式起重机安全要求
- 【中国信科-中信科移动】2023星地融合通信白皮书
- 脑电图判读异常脑电图
- 人体所需的七大营养素(卓越)
- 《小学生预防溺水安全教育班会》课件
- 传统园林技艺智慧树知到期末考试答案2024年
- 直播中的礼仪与形象塑造
- 2024年八年级数学下册期中检测卷【含答案】
- 老年人中医健康知识讲座总结
- 海南声茂羊和禽类半自动屠宰场项目环评报告
- 《民法典》合同编通则及司法解释培训课件
评论
0/150
提交评论