第二十三章旋转(能力提升)-2022-2023学年九年级数学上册单元过关测试定心卷(人教版)(解析版)_第1页
第二十三章旋转(能力提升)-2022-2023学年九年级数学上册单元过关测试定心卷(人教版)(解析版)_第2页
第二十三章旋转(能力提升)-2022-2023学年九年级数学上册单元过关测试定心卷(人教版)(解析版)_第3页
第二十三章旋转(能力提升)-2022-2023学年九年级数学上册单元过关测试定心卷(人教版)(解析版)_第4页
第二十三章旋转(能力提升)-2022-2023学年九年级数学上册单元过关测试定心卷(人教版)(解析版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-2023学年人教版九年级数学上册单元测试定心卷第二十三章旋转(能力提升)时间:100分钟总分:120分选择题(每题3分,共24分)1.下列图形中,是中心对称图形的是(

)A.B.C. D.【解析】解:A、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;B、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;C、能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故此选项符合题意;D、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;故选:C.【点睛】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.如图,点D为等边△ABC的边AB上一点,且ADAB,将△ACD绕点C逆时针旋转60°,得到△BCE,连接DE交BC于点F,则下列结论不成立的是(

)A.BE∥AC B.△CDE为等边三角形C.∠BFD=∠ADC D.DF=4EF【解析】解:∵△ABC是等边三角形,∴AB=BC,∠A=∠ABC=60°,由旋转的性质得:∠DCE=60°,△ACD≌△BCE,AC=BC,AD=BE,∠A=∠ABE=60°,∴△CDE是等边三角形,∠A+∠ABE=180°,∴BE∥AC,故A,B结论正确,但不符合题意;∵△ABC和△CDE是等边三角形,∴∠ABC=∠CDF=60°,∵∠BFD=∠CDF+∠DCF=60°+∠DCF,∠ADC=∠ABC+∠DCF=60°+∠DCF,∴∠BFD=∠ADC,故C结论正确,但不符合题意;故选:D.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.3.在平面直角坐标系中,点与点关于原点成中心对称,则的值为(

)A. B. C.1 D.3【解析】解:∵点与点关于原点成中心对称,∴,,故选C.【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.4.如图,在平面直角坐标系中,线段AB的端点在方格线的格点上,将AB绕点P顺时针方向旋转90°,得到线段A′B′,则点P的坐标为(

)A.(1,2) B.(1,4) C.(0,4) D.(2,1)【解析】解:如图所示,作线段AA'和BB'的垂直平分线,交于点P,则点P即为旋转中心,由图可得,点P的坐标为(1,2),故选:A.【点睛】本题主要考查了坐标与图形变换,解决问题的关键是掌握旋转的性质.一般情况,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.5.如图,在Rt中,,将绕点顺时针旋转,得到,连接交于点,则与的周长之和为(

)A.44 B.43 C.42 D.41【解析】解:∵△BDE由△BCA旋转得出,∴BD=BC=12.∵∠CBD=60°,∴△BCD为等边三角形,∴CD=BC=12.在Rt△ABC中,∠ACB=90°,AC=5,BC=12,∴,∴C△ACF+C△BDF=AC+CF+AF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42.故选:C.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、勾股定理以及三角形的周长,利用三角形的周长公式结合边与边的关系,找出C△ACF+C△BDF=AC+AB+CD+BD是解题的关键.6.如图,,将平行四边行绕原点O逆时针旋转,则点B的对应点的坐标是(

)A. B. C. D.【解析】解:连接OB、AC交于点M,∵,∴M(,),即M(,2),∴B(5,4),将平行四边行绕原点O逆时针旋转,则点B的对应点,连接OB′,分别过点B′、B作y轴、x轴的垂线,垂足为E、F,则OF=5,BF=4,∠B′EO=∠OFB=90°,OB′=OB,∵∠B′OB=∠EOF=90°,∴∠B′OE=∠BOF,∴△B′OE≌△BOF(AAS),∴OE=OF=5,B′E=BF=4,∴,故选:B.【点睛】本题考查了坐标与图形,平行四边形的性质,旋转的性质,全等三角形的判定和性质等,求出点B的坐标是解答此题的关键.7.如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是(

)A. B. C. D.【解析】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.8.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标是,顶点B的坐标是,对角线AC,BD的交点为M.将正方形ABCD绕着原点O逆时针旋转,每次旋转45°,则第2022次旋转结束时,点M的坐标为(

)A. B. C. D.【解析】解:∵,,∴,.过点D作轴,垂足为N,如解图所示,则.∵四边形ABCD为正方形,∴,.∴.∴.∴,.∴点D的坐标为.∵点M为BD的中点,∴点M的坐标为.由题意,可知正方形ABCD绕着原点O逆时针旋转,每次旋转45°,点M也绕着原点O逆时针旋转,每次旋转45°,则点M旋转一周需要旋转(次).又∵,,∴第2022次旋转结束时和第6次旋转结束时,点M的坐标相同,且此时点M的位置就是绕点O逆时针旋转270°(或顺时针旋转90°)的位置.∴第2022次旋转结束时,点M的坐标为,故选:D.【点睛】本题考查坐标与旋转规律,正方形性质,全等三角形的判定及性质,解题的关键是理解第2022次旋转结束时和第6次旋转结束时,点M的坐标相同,且此时点M的位置就是绕点O逆时针旋转270°(或顺时针旋转90°)的位置.二、填空题(每题3分,共24分)9.如图,将△ABC绕点A逆时针旋转60°得到△AB'C',若AC⊥B'C',则∠C=________度.【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB'C',∴∠CAC'=60°,∠C=∠C',∵AC⊥B'C',∴∠C'=90°-∠CAC'=30°=∠C,故答案为:30.【点睛】本题考查了旋转的性质,掌握旋转的性质是解题的关键.10.如图,在中,,将绕点逆时针旋转能与重合,若,则_________.【解析】解:∵CD∥AB,∴∠ACD=∠CAB=65°,∵△ABC绕点A旋转得到△AED,∴AC=AD,∴∠CDA=∠ACD=65°,∴∠CAD=180°-2∠ACD=180°-2×65°=50°,故答案为:.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.11.将边长为3的正方形ABCD绕点C顺时针方向旋转45°到FECG的位置(如图),EF与AD相交于点H,则HD的长为___.(结果保留根号)【解析】解:∵四边形ABCD为正方形,∴CD=3,∠CDA=90°,∵边长为3的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=3,∠CFE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=3﹣3.故答案为:3﹣3.【点睛】本题考查了旋转的性质,正方形的性质,熟练掌握旋转的性质是解题的关键.12.如图,在平面直角坐标系中,△ABC顶点的横、纵坐标都是整数,若将△ABC以某点为旋转中心,顺时针旋转得到△DEF,其中A、B、C分别和D、E、F对应,则旋转中心的坐标是___.【解析】解:如图所示,分别作线段AD、BE的垂直平分线,交于点Q,Q即为旋转中心,由A(1,2),D(4,-1),E(4,2),B(-2,2)知,线段BE的垂直平分线为x=1,△ADE为等腰直角三角形,E在AD垂直平分线上,AD中点坐标为(2.5,0.5),设线段AD垂直平分线解析式为y=kx+b,则:,解得:,则线段AD的垂直平分线为y=x-2,∴Q(1,-1),故答案为:(1,-1).【点睛】本题考查了坐标与图形的旋转变化及求线段垂直平分线解析式的方法.解题关键是理解旋转中心是对应点连线垂直平分线的交点.13.如图,中,,P是边AB上一点,连接CP,将线段CP绕点P逆时针旋转90°得,连接.若AP=BC=4,BP=2,则线段______.【解析】解:如图,过点作,交的延长线于点,将线段CP绕点P逆时针旋转90°得,连接.,,,,,,,,,中,,,故答案为:.【点睛】本题考查了旋转的性质,全等三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.14.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=_____度.【解析】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′,∴AB=AB′,∠BAB′=30°,AB∥CD,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∠B+∠C=180°,∴∠C=180°﹣75°=105°.故答案为:105.【点睛】本题主要考查了图形的旋转,平行性四边形的性质,熟练掌握图形的旋转的性质,平行性四边形的性质是解题的关键.15.如图,△ABC中,∠C=90°,AC=BC=9cm,将△ABC绕点A顺时针旋转15°后得到△AB'C',则图中阴影部分面积等于_____cm2.【解析】解:等腰中,,,绕点顺时针旋转后得到△,,,,,在△中,,阴影部分的面积.故答案为:.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.16.如图,正方形中,,点E为边上一动点,将点A绕点E顺时针旋转得到点F,则的最小值为__________.【解析】如图,上截取,过点作交的延长线于点,正方形中,,将点A绕点E顺时针旋转得到点F,是等腰直角三角形,在射线上运动,则是等腰直角三角形,与点重合时,取得最小值,等于即的最小值为故答案为:【点睛】本题考查了正方形的性质,全等三角形的性质,垂线段最短,求得的轨迹是解题的关键.三、解答题(每题8分,共72分)17.如图,方格纸中有三个格点,,,要求作一个多边形使这三个点在这个多边形的边(包括顶点)上,且多边形的顶点在方格的顶点上.(1)在图甲中作一个三角形是轴对称图形;(2)在图乙中作一个四边形是中心对称图形但不是轴对称图形;(3)在图丙中作一个四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)【解析】解:(1)如图甲中,△DEC即为所求作.(2)如图乙中,四边形ABCD即为所求作.(3)如图丙中,四边形AECD即为所求作.【点睛】本题考查作图-旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.如图,在中,,将绕点A旋转一定的角度得到,且点E恰好落在边上.(1)求证:平分;(2)连接,求证:.【解析】(1)证明:由旋转性质可知:平分(2)证明:如图所示:由旋转性质可知:即在中,即【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.19.如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,对角线AC所在的直线绕点O顺时针旋转角α(0°<α<120°),所得的直线l分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当旋转角α为多少度时,四边形AFCE为菱形?试说明理由.【解析】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AO=CO,∴∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS);(2)解:当α=90°时,四边形AFCE为菱形,理由:∵△AOE≌△COF,∴OE=OF,又∵AO=CO,∴四边形AFCE为平行四边形,又∵∠AOE=90°,∴四边形AFCE为菱形.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,菱形的判定,矩形的性质等知识,证明△AOE≌△COF是解题的关键.20.已知△ABC中,∠ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.【解析】(1)证明:∵△AED是△ABC旋转90°得到的,,∠CAD=90°,∴AC=AD,∴△ACD是等腰直角三角形;(2)解:∵△ACD是等腰直角三角形,∴∠ADC=∠ACD=45°,AC=AD=2,,由(1)知,∠ADE=∠ACB=135°,∴∠CDE=∠ADE-∠ADC=90°,∵DE=BC=1,∴.【点睛】本题考查了旋转的性质、全等三角形的性质、勾股定理、等腰直角三角形的判定和性质,解题的关键是先证明△ACD是等腰直角三角形,并证明△CDE是直角三角形.21.如图,正方形ABCD中,M是对角线BD上的一个动点(不与B、D重合),连接CM,将CM绕点C顺时针旋转90°到CN,连接MN,DN,求证:BM=DN.【解析】证明:四边形ABCD是正方形,,将CM绕点C顺时针旋转到CN,,,,在和中,,.【点睛】本题考查正方形中的旋转变换,解题的关键是掌握旋转的旋转,证明△CBM≌△CDN.22.如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D'CE'(如图乙).这时AB与CD'相交于点O,D'E'与AB相交于点F.求线段AD'的长.【解析】解:∵∠ACB=∠DEC=90°,∠A=45°,∠D=30°,∴∠DCE=60°,∠B=45°∵把三角板DCE绕点C顺时针旋转15°得到△D'CE',∴∠D'CE'=60°,∠BCE'=15°,∴∠OCB=45°,又∵∠B=45°,∴∠COB=90°,又∵△ACB是等腰直角三角形,∴AO=CO=BO=3cm,∴D'O=4cm,∴AD'===5cm.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰直角三角形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.23.将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.(1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.(2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说明理由.【解析】(1)证明:∵两块是完全相同的且含角的直角三角板和,∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,∴∠AEC=∠ACE,∴∠AEC-∠AEF=∠ACE-∠ACB,∴∠PEC=∠PCE,∴PE=PC,又AE=AC,∴所在的直线是线段的垂直平分线.(2)解:在旋转过程中,能成为直角三角形,由旋转的性质得:∠FAC=,当∠CNP=90°时,∠FNA=90°,又∠F=60°,∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;当∠CPN=90°时,∵∠NCP=30°,∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,∵∠F=60°,∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,综上,旋转角的的度数为30°或60°.【点睛】本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.24.【模型建立】(1)如图1,在正方形中,点E是对角线上一点,连接,.求证:.【模型应用】(2)如图2,在正方形中,点E是对角线上一点,连接,.将绕点E逆时针旋转,交的延长线于点F,连接.当时,求的长.【模型迁移】(3)如图3,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论