版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHAPTER1
SOLUTIONSTOPROBLEMS
1.1(i)Ideally,wecouldrandomlyassignstudentstoclassesofdifferentsizes.
Thatis,eachstudentisassignedadifferentclasssizewithoutregardtoanystudent
characteristicssuchasabilityandfamilybackground.Forreasonswewillseein
Chapter2,wewouldlikesubstantialvariationinclasssizes(subject,ofcourse,to
ethicalconsiderationsandresourceconstraints).
(ii)Anegativecorrelationmeansthatlargerclasssizeisassociatedwithlower
performance.Wemightfindanegativecorrelationbecauselargerclasssizeactually
hurtsperformance.
However,withobservationaldata,thereareotherreasonswemightfindanegative
relationship.Forexample,childrenfrommoreaffluentfamiliesmightbemore
likelytoattendschoolswithsmallerclasssizes,andaffluentchildrengenerallyscore
betteronstandardizedtests.Anotherpossibilityisthat,withinaschool,aprincipal
mightassignthebetterstudentstosmallerclasses.Or,someparentsmightinsisttheir
childrenareinthesmallerclasses,andthesesameparentstendtobemoreinvolvedin
theirchildren'seducation.
(iii)Giventhepotentialforconfoundingfactors-someofwhicharelistedin(ii)一
findinganegativecorrelationwouldnotbestrongevidencethatsmallerclasssizes
actuallyleadtobetterperformance.Somewayofcontrollingfortheconfounding
factorsisneeded,andthisisthesubjectofmultipleregressionanalysis.
1.2(i)Hereisonewaytoposethequestion:Iftwofirms,sayAandB,areidentical
inall
respectsexceptthatfirmAsuppliesjobtrainingonehourperworkermorethanfirm
B,byhowmuchwouldfirmA'soutputdifferfromfirmB's?
(ii)Firmsarelikelytochoosejobtrainingdependingonthecharacteristicsof
workers.Someobservedcharacteristicsareyearsofschooling,yearsintheworkforce,
andexperienceinaparticularjob.Firmsmightevendiscriminatebasedonage,
gender,orrace.Perhapsfirmschoosetooffertrainingtomoreorlessableworkers,
where—abilityIImightbedifficultto
quantifybutwhereamanagerhassomeideaabouttherelativeabilitiesofdifferent
employees.Moreover,differentkindsofworkersmightbeattractedtofirmsthat
offermorejobtrainingonaverage,andthismightnotbeevidenttoemployers.
(iii)Theamountofcapitalandtechnologyavailabletoworkerswouldalsoaffect
output.So,twofirmswithexactlythesamekindsofemployeeswouldgenerally
havedifferentoutputsiftheyusedifferentamountsofcapitalortechnology.The
qualityofmanagerswouldalsohaveaneffect.
(iv)No,unlesstheamountoftrainingisrandomlyassigned.Themanyfactors
listedinparts(ii)and(iii)cancontributetofindingapositivecorrelationbetween
outputandtrainingevenifjobtrainingdoesnotimproveworkerproductivity.
1.3Itdoesnotmakesensetoposethequestionintermsofcausality.Economists
wouldassumethatstudentschooseamixofstudyingandworking(andother
activities,suchasattendingclass,
1
leisure,andsleeping)basedonrationalbehavior,suchasmaximizingutilitysubject
totheconstraintthatthereareonly168hoursinaweek.Wecanthenusestatistical
methodstomeasuretheassociationbetweenstudyingandworking,including
regressionanalysisthatwecoverstartinginChapter2.Butwewouldnotbe
claimingthatonevariable—causesIItheother.Theyarebothchoicevariablesof
thestudent.
CHAPTER2
SOLUTIONSTOPROBLEMS
2.1(i)Income,age,andfamilybackground(suchasnumberofsiblings)arejusta
few
possibilities.Itseemsthateachofthesecouldbecorrelatedwithyearsof
education.(Incomeandeducationareprobablypositivelycorrelated;ageand
educationmaybenegativelycorrelatedbecausewomeninmorerecentcohortshave,
onaverage,moreeducation;andnumberofsiblingsandeducationareprobably
negativelycorrelated.)
(ii)Notifthefactorswelistedinpart(i)arecorrelatedwitheduc.Becausewe
wouldliketoholdthesefactorsfixed,theyarepartoftheerrortenn.Butifuis
correlatedwitheducthenE(u|educ)0,andsoSLR.4fails.
2.2Intheequationy=0+lx+u,addandsubtract0fromtherighthand
sidetogety=(0+0)+lx+(u0),Callthenewerrore=u0,so
thatE(e)=0.Thenewinterceptis0+0,buttheslopeisstill1.
2.3(i)Letyi=GPAi,xi=ACTi,andn=8.Then=25.875,=3.2125,(xi
-)(yi-)=iIn
八=5.8125,and(xi-)2=56.875.Fromequation(2.9),weobtaintheslopeas
liIn
八=一5.8125/56.875.1022,roundedtofourplacesafterthedecimal.From
(2.17),0
-3.2125-(.1022)25.875.5681.Sowecanwrite1
.5681+.1022ACTGPAn=8.
TheinterceptdoesnothaveausefulinterpretationbecauseACTisnotclosetozero
forthe
increasesby.1022(5)=.511.populationofinterest.IfACTis5pointshigher,
GPA
(ii)Thefittedvaluesandresiduals——roundedtofourdecimalplaces——aregiven
alongwiththeobservationnumberiandGPAinthefollowingtable:
2
Youcanverifythattheresiduals,asreportedinthetable,sumto.0002,whichis
prettyclosetozerogiventheinherentroundingerror.
=.5681+.1022(20)2.61.(iii)WhenACT=20,GPA
\2,isabout.4347(roundedtofourdecimalplaces),(iv)Thesumofsquared
residuals,u
i1
nn
andthetotalsumofsquares,(yi-)2,isabout1.0288.SotheR-squaredfrom
the
i1
regressionis
R2=1-SSR/SST1-(.4347/1.0288).577.
Therefore,about57.7%ofthevariationinGPAisexplainedbyACTinthissmall
sampleofstudents.
2.4(i)Whencigs=0,predictedbirthweightis119.77ounces.Whencigs=20,
bwght=109.49.
Thisisaboutan8.6%drop.
(ii)Notnecessarily.Therearemanyotherfactorsthatcanaffectbirthweight,
particularlyoverallhealthofthemotherandqualityofprenatalcare.Thesecouldbe
correlatedwith
cigarettesmokingduringbirth.Also,somethingsuchascaffeineconsumptioncan
affectbirthweight,andmightalsobecorrelatedwithcigarettesmoking.
(iii)Ifwewantapredictedbwghtof125,thencigs=(125-119.77)/(-.524)
-10.18,orabout-10cigarettes!Thisisnonsense,ofcourse,anditshowswhat
happenswhenwearetryingtopredictsomethingascomplicatedasbirthweightwith
onlyasingleexplanatoryvariable.Thelargestpredictedbirthweightisnecessarily
119.77.Yetalmost700ofthebirthsinthesamplehadabirthweighthigherthan
119.77.
3
(iv)1,176outof1,388womendidnotsmokewhilepregnant,orabout84.7%.
Becauseweareusingonlycigstoexplainbirthweight,wehaveonlyonepredicted
birthweightatcigs=0.Thepredictedbirthweightisnecessarilyroughlyinthe
middleoftheobservedbirthweightsatcigs=0,andsowewillunderpredicthigh
birthrates.
2.5(i)Theinterceptimpliesthatwheninc=0,consispredictedtobenegative
$124.84.This,ofcourse,cannotbetrue,andreflectsthatfactthatthisconsumption
functionmightbeapoorpredictorofconsumptionatverylow-incomelevels.On
theotherhand,onanannualbasis,$124.84isnotsofarfromzero.
=-124.84+.853(30,000)=25,465.16dollars,(ii)Justplug30,000intothe
equation:cons
(iii)TheMPCandtheAPCareshowninthefollowinggraph.Eventhoughthe
interceptisnegative,thesmallestAPCinthesampleispositive.Thegraphstartsat
anannualincomelevel
increaseshousingprices.
(ii)Ifthecitychosetolocatetheincineratorinanareaawayfrommoreexpensive
neighborhoods,thenlog(dist)ispositivelycorrelatedwithhousingquality.This
wouldviolateSLR.4,andOLSestimationisbiased.
(iii)Sizeofthehouse,numberofbathrooms,sizeofthelot,ageofthehome,and
qualityoftheneighborhood(includingschoolquality),arejustahandfuloffactors.
Asmentionedinpart(ii),thesecouldcertainlybecorrelatedwithdist[andlog(dist)].
4
2.7(i)Whenweconditiononinc
E(u|inc
e|inc
)=E(e|inc
0becauseE(e|inc)=E(e)=0.
(ii)Again,whenweconditiononinc
Var(u|inc
e|inc
2Var(e|inc)=e2incbecauseVar(e|inc)=e2.
(iii)Familieswithlowincomesdonothavemuchdiscretionaboutspending;
typically,alow-incomefamilymustspendonfood,clothing,housing,andother
necessities.Higherincomepeoplehavemorediscretion,andsomemightchoose
moreconsumptionwhileothersmoresaving.Thisdiscretionsuggestswider
variabilityinsavingamonghigherincomefamilies.
2.8(i)Fromequation(2.66),
nn21=xiyi/xi.i1i1
Plugginginyi=0+Ixi+uigives
nn21=xi(0Ixiui)xi.i1i1
Afterstandardalgebra,thenumeratorcanbewrittenas
0xi1xxiui.2nnn
ililii1
asPuttingthisoverthedenominatorshowswecanwrite1
nn2nn21=0xi/xi+1+
xiui/xi.i1i1i1i1
Conditionalonthexi,wehave
nn2E(1)=0xi/xi+1i1i1
isgivenbythefirstterminthisequation,becauseE(ui)=0foralli.
Therefore,thebiasin1
Thisbiasisobviouslyzerowhen0=0.Itisalsozerowhenxi=0,whichis
thesameas
iIn
=0.Inthelattercase,regressionthroughtheoriginisidenticaltoregressionwith
anintercept.
5
inpart(i)wehave,conditionalonthexi,(ii)Fromthelastexpressionfor1
)Var(1
n2nn2n2
=xiVarxiui=xixiVar(ui)
i1i1i1i1
2
2
2
n22n22=xixi=/xi2.
i1i1i1
nnn222八(iii)From(2.57),Var(1)=/(xi).Fromthehint,xi
(xi)2,andso
ili1i1
n
)Var()Amoredirectwaytoseethisistowrite(x)2=x2n()2,
whichVar(iill
i1
i1
islessthanxi2unless=0.
i1
n
increasesasincreases(holdingthesumofthe(iv)Foragivensamplesize,the
biasin1
"increasesrelativetoVar().Thebiasinx2fixed).Butasincreases,
thevarianceof
i
111
or'onameansquarederrorisalsosmallwhen0issmall.Therefore,
whetherweprefer11basisdependsonthesizesof0,,andn(inadditiontothe
sizeofxi2).
iIn
2.9(i)Wefollowthehint,notingthatcly=cl(thesampleaverageofclyiiscl
timesthesampleaverageofyi)andc2x=c2.Whenweregressclyionc2xi
(includinganintercept)weuseequation(2.19)toobtaintheslope:
1
(excx)(cc)cc(x)(y)
2in
2
li
1
12n
i
i
i1
nn
i1
(exc)
2i
2
iIn
n
2
c(x)
2
2
i
i1
2
clilc2
(xi)(yi)
2
i
(x)
i1
eri.c2
=(cl)-(c2)=(cl)-[(cl/c2)A](c2)=From(2.17),weobtainthe
interceptasOil
八)becausetheinterceptfromregressingyionxiis(-A)=cl").cl(-
1
1
(ii)Weusethesameapproachfrompart(i)alongwiththefactthat(cly)=c1+
and
(c2x)=c2+.Therefore,(clyi)(cly)=(cl+yi)一(cl+)=yi-
and(c2+xi)-
6
(c2x)=xi-.Soclandc2entirelydropoutoftheslopeformulaforthe
regressionof(cl+yi)
=(cy)-=1Theinterceptis(cx)=(cl+)-"(c2+)=on
(c2+xi),and1101121
八+cl-c2")+c1-c2'=",whichiswhatwewantedtoshow.(0111
(iii)Wecansimplyapplypart(ii)becauselog(clyi)log(cl)log(yi).Inother
words,replaceclwithlog(cl),yiwithlog(yi),andsetc2=0.
(iv)Again,wecanapplypart(ii)withcl=0andreplacingc2withlog(c2)andxi
withlog(xi).八and八aretheoriginalinterceptandslope,then八and
「log(c)\If01110021
2.10(i)Thisderivationisessentiallydoneinequation(2.52),once(1/SSTx)is
broughtinsidethesummation(whichisvalidbecauseSSTxdoesnotdependoni).
Then,justdefine
widi/SSTx.
八,)E[(八)],weshowthatthelatteriszero.But,frompart(i),(ii)
BecauseCov(111
nnwE(u).Becausetheuarepairwiseuncorrelated人)]
=EE[(wuilliiliiili
(theyareindependent),E(ui)E(ui2/n)2/n(becauseE(uiuh)0,ih).
Therefore,iIwiE(ui)ilwi(2/n)(2/n)iIwi0.
nnnA八and,pluggingin(iii)TheformulafortheOLSintercept
is010"()(人)givesOOHOITandare
uncorrelated,(iv)Because1
[Var()Var(八)22/n(2/SST)22/n22/SST,Var(Olxx
whichiswhatwewantedtoshow.
八)2[SST/n2]/SST(v)UsingthehintandsubstitutiongivesVar(Oxx
12222122nx/SSTnx/SSTx.xiliili
2.11(i)Wewouldwanttorandomlyassignthenumberofhoursinthepreparation
coursesothathoursisindependentofotherfactorsthataffectperformanceonthe
SAT.Then,wewouldcollectinformationonSATscoreforeachstudentinthe
experiment,yieldingadataset{(sati,hoursi):iwherenisthenumberof
studentswecanaffordtohaveinthestudy.Fromequation(2.7),weshouldtryto
getasmuchvariationinhoursiasisfeasible.
nn
7
(ii)Herearethreefactors:innateability,familyincome,andgeneralhealthonthe
dayoftheexam.Ifwethinkstudentswithhighernativeintelligencethinktheydo
notneedtopreparefbrtheSAT,thenabilityandhourswillbenegativelycorrelated.
Familyincomewouldprobablybepositivelycorrelatedwithhours,becausehigher
incomefamiliescanmoreeasilyafford
preparationcourses.Rulingoutchronichealthproblems,healthonthedayofthe
examshouldberoughlyuncorrelatedwithhoursspentinapreparationcourse.
(iii)Ifpreparationcoursesareeffective,1shouldbepositive:otherfactorsequal,
an
increaseinhoursshouldincreasesat.
(iv)Theintercept,0,hasausefulinterpretationinthisexample:becauseE(u)=0,
0istheaverageSATscorefbrstudentsinthepopulationwithhours=0.
CHAPTER3
SOLUTIONSTOPROBLEMS
3.1(i)hspercisdefinedsothatthesmalleritis,thelowerthestudentJsstandingin
highschool.Everythingelseequal,theworsethestudent?sstandinginhighschool,
thelowerishis/herexpectedcollegeGPA.
(ii)Justplugthesevaluesintotheequation:
=1.392.0135(20)+.00148(1050)=2.676.colgpa
(iii)ThedifferencebetweenAandBissimply140timesthecoefficientonsat,
becausehspercisthesamefbrbothstudents.SoAispredictedtohavea
score.00148(140).207higher.
(iv)Withhspercfixed,colgpa=.00148sat.Now,wewanttofindsat
suchthat
=.5,so.5=.00148(sat)orsat=.5/(.00148)338.Perhapsnot
surprisingly,acolgpa
largeceterisparibusdifferenceinSATscore-almosttwoandone-halfstandard
deviations-isneededtoobtainapredicteddifferenceincollegeGPAorahalfapoint.
3.2(i)Yes.Becauseofbudgetconstraints,itmakessensethat,themoresiblings
thereareinafamily,thelesseducationanyonechildinthefamilyhas.Tofindthe
increaseinthenumberofsiblingsthatreducespredictededucationbyoneyear,we
solve1=.094(sibs),sosibs=1/.09410.6.
(ii)Holdingsibsandfeducfixed,onemoreyearofmother?seducationimplies.131
yearsmoreofpredictededucation.Soifamotherhasfourmoreyearsofeducation,
hersonispredictedtohaveaboutahalfayear(.524)moreyearsofeducation.
8
(iii)Sincethenumberofsiblingsisthesame,butmeducandfeducareboth
different,thecoefficientsonmeducandfeducbothneedtobeaccountedfbr.The
predicteddifferenceineducationbetweenBandAis.131(4)+.210(4)=1.364.
3.3(i)Ifadultstradeoffsleepfbrwork,moreworkimplieslesssleep(otherthings
equal),so1<0.
(ii)Thesignsof2and3arenotobvious,atleasttome.Onecouldarguethat
more
educatedpeopleliketogetmoreoutoflife,andso,otherthingsequal,theysleep
less(2<0).Therelationshipbetweensleepingandageismorecomplicated
thanthismodelsuggests,andeconomistsarenotinthebestpositiontojudgesuch
things.
(iii)Sincetotwrkisinminutes,wemustconvertfivehoursintominutes:totwrk
=5(60)=300.Thensleepispredictedtofallby.148(300)=44.4minutes.Fora
week,45minuteslesssleepisnotanoverwhelmingchange.
(iv)Moreeducationimplieslesspredictedtimesleeping,buttheeffectisquite
small.Ifweassumethedifferencebetweencollegeandhighschoolisfouryears,
thecollegegraduatesleepsabout45minuteslessperweek,otherthingsequal.
(v)Notsurprisingly,thethreeexplanatoryvariablesexplainonlyabout11.3%ofthe
variationinsleep.Oneimportantfactorintheerrortermisgeneralhealth.
Anotherismaritalstatus,andwhetherthepersonhaschildren.Health(howeverwe
measurethat),maritalstatus,andnumberandagesofchildrenwouldgenerallybe
correlatedwithtotwrk.(Forexample,lesshealthypeoplewouldtendtoworkless.)
3.4(i)Alargerrankfbralawschoolmeansthattheschoolhaslessprestige;this
lowersstartingsalaries.Forexample,arankof100meansthereare99schools
thoughttobebetter.
(ii)1>0,2>0.BothLSATandGPAaremeasuresofthequalityofthe
enteringclass.Nomatterwherebetterstudentsattendlawschool,weexpectthemto
earnmore,onaverage.3,4>0.Thenumberofvolumesinthelawlibrary
andthetuitioncostarebothmeasuresoftheschoolquality.(Costislessobvious
thanlibraryvolumes,butshouldreflectqualityofthefaculty,physicalplant,andso
on.)
(iii)ThisisjustthecoefficientonGPA,multipliedby100:24.8%.
(iv)Thisisanelasticity:aonepercentincreaseinlibraryvolumesimplies
a.095%increaseinpredictedmedianstartingsalary,otherthingsequal.
(v)Itisdefinitelybettertoattendalawschoolwithalowerrank.IflawschoolA
hasaranking20lessthanlawschoolB,thepredicteddifferenceinstartingsalaryis
100(.0033)(20)=
6.6%higherfbrlawschoolA.
9
3.5(i)No.Bydefinition,study+sleep+work+leisure=168.Therefore,ifwe
changestudy,wemustchangeatleastoneoftheothercategoriessothatthesumis
still168.
(ii)Frompart(i),wecanwrite,say,studyasaperfectlinearfunctionoftheother
independentvariables:study=168sleepworkleisure.Thisholdsfbr
everyobservation,soMLR.3violated.
(iii)Simplydroponeoftheindependentvariables,sayleisure:
GPA=0+1study+2sleep+3work+u.
Now,fbrexample,1isinterpretedasthechangeinGPAwhenstudyincreasesby
onehour,
wheresleep,work,anduareallheldfixed.Ifweareholdingsleepandworkfixed
butincreasingstudybyonehour,thenwemustbereducingleisurebyonehour.The
otherslopeparametershaveasimilarinterpretation.
1)=E(八)=八+3.6Conditioningontheoutcomesoftheexplanatory
variables,wehaveE(21
)=1+2=.2+E(E(121
3.7Only(ii),omittinganimportantvariable,cancausebias,andthisistrueonly
whentheomittedvariableiscorrelatedwiththeincludedexplanatoryvariables.The
homoskedasticityassumption,MLR.5,playednoroleinshowingthattheOLS
estimatorsareunbiased.
八.)Further,the(Homoskedasticitywasusedtoobtaintheusualvarianceformulas
fbrthej
degreeofcollinearitybetweentheexplanatoryvariablesinthesample,evenifitis
reflectedinacorrelationashighas.95,doesnotaffecttheGauss-Markov
assumptions.Onlyifthereisaperfectlinearrelationshipamongtwoormore
explanatoryvariablesisMLR.3violated.
3.8WecanuseTable3.2.Bydefinition,2>0,andbyassumption,
Corr(xl,x2)<0.
:E()<.Thismeansthat,onaverageacrossTherefore,thereisa
negativebiasin111
differentrandomsamples,thesimpleregressionestimatorunderestimatestheeffect
ofthe
)isnegativeeventhough>0.trainingprogram.Itisevenpossiblethat
E(11
3.9(i)1<0becausemorepollutioncanbeexpectedtolowerhousingvalues;
notethat1istheelasticityofpricewithrespecttonox.2isprobablypositive
becauseroomsroughlymeasuresthesizeofahouse.(However,itdoesnotallowus
todistinguishhomeswhereeachroomislargefromhomeswhereeachroomissmall.)
(ii)Ifweassumethatroomsincreaseswithqualityofthehome,thenlog(nox)and
roomsarenegativelycorrelatedwhenpoorerneighborhoodshavemorepollution,
somethingthatisoftentrue.WecanuseTable3.2todeterminethedirectionofthe
bias.If2>0and
hasadownwardbias.Butbecause<0,Corr(xl,x2)<0,thesimple
regressionestimator11
10
)thismeansthatthesimpleregression,onaverage,overstatestheimportanceof
pollution.[E(1
ismorenegativethan1.](iii)Thisiswhatweexpectfromthetypicalsample
basedonouranalysisinpart(ii).Thesimpleregressionestimate,1.043,ismore
negative(largerinmagnitude)thanthemultipleregressionestimate,.718.As
thoseestimatesareonlyforonesample,wecanneverknowwhichiscloserto1.
Butifthisisa—typicalIIsample,1iscloserto.718.
3.10(i)Becausexlishighlycorrelatedwithx2andx3,andtheselattervariables
havelargepartialeffectsony,thesimpleandmultipleregressioncoefficientsonxl
candifferbylargeamounts.Wehavenotdonethiscaseexplicitly,butgivenequation
(3.46)andthediscussionwithasingleomittedvariable,theintuitionispretty
straightforward.
and八tobesimilar(subject,ofcourse,towhatwemeanby(ii)Herewe
wouldexpect11
—almostuncorrelatedII).Theamountofcorrelationbetweenx2andx3doesnot
directlyeffectthemultipleregressionestimateonxlifxlisessentiallyuncorrelated
withx2andx3.(iii)Inthiscaseweare(unnecessarily)introducing
multicollinearityintotheregression:x2andx3havesmallpartialeffectsonyandyet
x2andx3arehighlycorrelatedwithxl.Adding
")isxandxlikeincreasesthestandarderrorofthecoefficientonxsubstantially,so
se(
2
311
).likelytobemuchlargerthanse(1
(iv)Inthiscase,addingx2andx3willdecreasetheresidualvariancewithout
causing
八)muchcollinearity(becausexlisalmostuncorrelatedwithx2andx3),sowe
shouldseese(1
).Theamountofcorrelationbetweenxandxdoesnotdirectlyaffectsmaller
thanse(
1
2
3
)se(1
3.11Fromequation(3.22)wehave
1
r-y
i1
n
n
ili
r”
i1
2il
'ilaredefinedintheproblem.Asusual,wemustpluginthetruemodelforyi:
wherether
11
1
ili1
n
Ixil2xi23xi3ui
K
i1
n
2
il
'il=0,rAilxi2=0,andr'ilxil=Thenumeratorofthisexpressionsimplifies
becauser
i1
i1
i1
n
n
n
i1
n
2
iTilaretheresidualsfromtheregressionofxilon.Theseallfollowfromthe
factthatther
"ilhavezerosampleaverageandareuncorrelatedinsamplewithxi2.Sothe
numeratorxi2:ther
canbeexpressedasof
1
3Clxi3r'ilui.1r
2
ili1
i1
i1
n
n
n
Puttingthesebackoverthedenominatorgives
11
i1
3n
r"xrA
i1
2
il
n
ili3
Aru
iIn
n
li
i1
2il
Conditionalonallsamplevaluesonxl,x2,andx3,onlythelasttermisrandomdue
toitsdependenceonui.ButE(ui)=0,andso
)=+E(113
rX
i1
n
n
ili3
9
i1
2il
whichiswhatwewantedtoshow.Noticethatthetermmultiplying3isthe
regression
"il.coefficientfromthesimpleregressionofxi3onr
3.12(i)Theshares,bydefinition,addtoone.Ifwedonotomitoneoftheshares
thentheequationwouldsufferfromperfectmulticollinearity.Theparameterswould
nothaveaceterisparibusinterpretation,asitisimpossibletochangeonesharewhile
holdingalloftheothersharesfixed.(ii)Becauseeachshareisaproportion(and
canbeatmostone,whenallothersharesarezero),itmakeslittlesensetoincrease
sharepbyoneunit.Ifsharepincreasesby.01-whichisequivalenttoaone
percentagepointincreaseintheshareofpropertytaxesintotalrevenue-
12
holdingsharel,shareS,andtheotherfactorsfixed,thengrowthincreasesby
1(.01).Withtheothersharesfixed,theexcludedshare,shareF,mustfallby.01
whensharepincreasesby.01.
3.13(i)Fornotationalsimplicity,defineszx=(zi)xi;thisisnotquitethe
sample
iIn
covariancebetweenzandxbecausewedonotdividebyn-1,butweareonly
usingitto
assimplifynotation.Thenwecanwrite1
1
(z)y
i
i1
n
i
szx
Thisisclearlyalinearfunctionoftheyi:taketheweightstobewi=(zi)/szx.
Toshowunbiasedness,asusualweplugyi=0+Ixi+uiintothisequation,and
simplify:
1
(z)(
i
i1
n
n
Ixiui)
n
szx
0(zi)Iszx(zi)ui
i1
i1
szx
1
n
(z)u
i
i1
i
szx
whereweusethefactthat(zi)=0always.Nowszxisafunctionofthezi
andxiandthe
i1
expectedvalueofeachuiiszeroconditionalonallziandxiinthesample.
Therefore,conditional
onthesevalues,
)E(11
(Z)E(u)
i
i
i1
n
szx
1
becauseE(ui)=0foralli.(ii)Fromthefourthequationinpart(i)wehave(again
conditionalontheziandxiinthesample),
13
)VarVar(1(z)u(z)Var(u)2iiiii12szx
n2nni12szx
2(z)ii1
2szx
becauseofthehomoskedasticityassumption[Var(ui)=2foralli].Giventhe
definitionofszx,thisiswhatwewantedtoshow.
")=2/[(x)2].Nowwecanrearrangetheinequalityinthe(iii)Weknow
thatVar(i1
iIn
2hint,dropfromthesamplecovariance,andcancelneverywhere,toget
[(zi)2]/szx>-In
i1
)Var()whichiswhatl/[(xi)2].Whenwemultiplythroughby
2wegetVar(11
iIn
wewantedtoshow.
CHAPTER4
4.1(i)and(iii)generallycausethetstatisticsnottohaveatdistributionunderHO.
HomoskedasticityisoneoftheCLMassumptions.Animportantomittedvariable
violatesAssumptionMLR.3.TheCLMassumptionscontainnomentionofthe
samplecorrelationsamongindependentvariables,excepttoruleoutthecasewhere
thecorrelationisone.
4.2(i)HO:3=0.Hl:3>0.
(ii)Theproportionateeffectonsalaryis.00024(50)=.012.Toobtainthe
percentage
effect,wemultiplythisby100:1.2%.Therefore,a50pointceterisparibus
increaseinrosispredictedtoincrease
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度公司离职保密协议赔偿标准合同范本
- 2025年度美食广场联营合作经营合同
- 二零二五年度著作权电子版权保护合同范本
- 2025年高科技产品进出口销售合同范本4篇
- 2025年度汽车零部件出口销售合同模板4篇
- 2025年度会议活动现场场记聘用合同4篇
- 2025年私有住宅买卖合同专项维修基金管理协议3篇
- 二零二五年度护理专业继续教育课程开发合同3篇
- 二零二五年海上拖带服务合同3篇
- 2025年度智能设备远期买卖合同4篇
- 《疥疮的防治及治疗》课件
- Unit4 What can you do Part B read and write (说课稿)-2024-2025学年人教PEP版英语五年级上册
- 2025年MEMS传感器行业深度分析报告
- 《线控底盘技术》2024年课程标准(含课程思政设计)
- 学校对口帮扶计划
- 仓库仓储安全管理培训课件模板
- 风力发电场运行维护手册
- 《3-6岁儿童学习与发展指南》专题培训
- 河道旅游开发合同
- 情人合同范例
- 建筑公司劳务合作协议书范本
评论
0/150
提交评论