计量经济学导论(伍德里奇第三版)课后习题答案_第1页
计量经济学导论(伍德里奇第三版)课后习题答案_第2页
计量经济学导论(伍德里奇第三版)课后习题答案_第3页
计量经济学导论(伍德里奇第三版)课后习题答案_第4页
计量经济学导论(伍德里奇第三版)课后习题答案_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CHAPTER1

SOLUTIONSTOPROBLEMS

1.1(i)Ideally,wecouldrandomlyassignstudentstoclassesofdifferentsizes.

Thatis,eachstudentisassignedadifferentclasssizewithoutregardtoanystudent

characteristicssuchasabilityandfamilybackground.Forreasonswewillseein

Chapter2,wewouldlikesubstantialvariationinclasssizes(subject,ofcourse,to

ethicalconsiderationsandresourceconstraints).

(ii)Anegativecorrelationmeansthatlargerclasssizeisassociatedwithlower

performance.Wemightfindanegativecorrelationbecauselargerclasssizeactually

hurtsperformance.

However,withobservationaldata,thereareotherreasonswemightfindanegative

relationship.Forexample,childrenfrommoreaffluentfamiliesmightbemore

likelytoattendschoolswithsmallerclasssizes,andaffluentchildrengenerallyscore

betteronstandardizedtests.Anotherpossibilityisthat,withinaschool,aprincipal

mightassignthebetterstudentstosmallerclasses.Or,someparentsmightinsisttheir

childrenareinthesmallerclasses,andthesesameparentstendtobemoreinvolvedin

theirchildren'seducation.

(iii)Giventhepotentialforconfoundingfactors-someofwhicharelistedin(ii)一

findinganegativecorrelationwouldnotbestrongevidencethatsmallerclasssizes

actuallyleadtobetterperformance.Somewayofcontrollingfortheconfounding

factorsisneeded,andthisisthesubjectofmultipleregressionanalysis.

1.2(i)Hereisonewaytoposethequestion:Iftwofirms,sayAandB,areidentical

inall

respectsexceptthatfirmAsuppliesjobtrainingonehourperworkermorethanfirm

B,byhowmuchwouldfirmA'soutputdifferfromfirmB's?

(ii)Firmsarelikelytochoosejobtrainingdependingonthecharacteristicsof

workers.Someobservedcharacteristicsareyearsofschooling,yearsintheworkforce,

andexperienceinaparticularjob.Firmsmightevendiscriminatebasedonage,

gender,orrace.Perhapsfirmschoosetooffertrainingtomoreorlessableworkers,

where—abilityIImightbedifficultto

quantifybutwhereamanagerhassomeideaabouttherelativeabilitiesofdifferent

employees.Moreover,differentkindsofworkersmightbeattractedtofirmsthat

offermorejobtrainingonaverage,andthismightnotbeevidenttoemployers.

(iii)Theamountofcapitalandtechnologyavailabletoworkerswouldalsoaffect

output.So,twofirmswithexactlythesamekindsofemployeeswouldgenerally

havedifferentoutputsiftheyusedifferentamountsofcapitalortechnology.The

qualityofmanagerswouldalsohaveaneffect.

(iv)No,unlesstheamountoftrainingisrandomlyassigned.Themanyfactors

listedinparts(ii)and(iii)cancontributetofindingapositivecorrelationbetween

outputandtrainingevenifjobtrainingdoesnotimproveworkerproductivity.

1.3Itdoesnotmakesensetoposethequestionintermsofcausality.Economists

wouldassumethatstudentschooseamixofstudyingandworking(andother

activities,suchasattendingclass,

1

leisure,andsleeping)basedonrationalbehavior,suchasmaximizingutilitysubject

totheconstraintthatthereareonly168hoursinaweek.Wecanthenusestatistical

methodstomeasuretheassociationbetweenstudyingandworking,including

regressionanalysisthatwecoverstartinginChapter2.Butwewouldnotbe

claimingthatonevariable—causesIItheother.Theyarebothchoicevariablesof

thestudent.

CHAPTER2

SOLUTIONSTOPROBLEMS

2.1(i)Income,age,andfamilybackground(suchasnumberofsiblings)arejusta

few

possibilities.Itseemsthateachofthesecouldbecorrelatedwithyearsof

education.(Incomeandeducationareprobablypositivelycorrelated;ageand

educationmaybenegativelycorrelatedbecausewomeninmorerecentcohortshave,

onaverage,moreeducation;andnumberofsiblingsandeducationareprobably

negativelycorrelated.)

(ii)Notifthefactorswelistedinpart(i)arecorrelatedwitheduc.Becausewe

wouldliketoholdthesefactorsfixed,theyarepartoftheerrortenn.Butifuis

correlatedwitheducthenE(u|educ)0,andsoSLR.4fails.

2.2Intheequationy=0+lx+u,addandsubtract0fromtherighthand

sidetogety=(0+0)+lx+(u0),Callthenewerrore=u0,so

thatE(e)=0.Thenewinterceptis0+0,buttheslopeisstill1.

2.3(i)Letyi=GPAi,xi=ACTi,andn=8.Then=25.875,=3.2125,(xi

-)(yi-)=iIn

八=5.8125,and(xi-)2=56.875.Fromequation(2.9),weobtaintheslopeas

liIn

八=一5.8125/56.875.1022,roundedtofourplacesafterthedecimal.From

(2.17),0

-3.2125-(.1022)25.875.5681.Sowecanwrite1

.5681+.1022ACTGPAn=8.

TheinterceptdoesnothaveausefulinterpretationbecauseACTisnotclosetozero

forthe

increasesby.1022(5)=.511.populationofinterest.IfACTis5pointshigher,

GPA

(ii)Thefittedvaluesandresiduals——roundedtofourdecimalplaces——aregiven

alongwiththeobservationnumberiandGPAinthefollowingtable:

2

Youcanverifythattheresiduals,asreportedinthetable,sumto.0002,whichis

prettyclosetozerogiventheinherentroundingerror.

=.5681+.1022(20)2.61.(iii)WhenACT=20,GPA

\2,isabout.4347(roundedtofourdecimalplaces),(iv)Thesumofsquared

residuals,u

i1

nn

andthetotalsumofsquares,(yi-)2,isabout1.0288.SotheR-squaredfrom

the

i1

regressionis

R2=1-SSR/SST1-(.4347/1.0288).577.

Therefore,about57.7%ofthevariationinGPAisexplainedbyACTinthissmall

sampleofstudents.

2.4(i)Whencigs=0,predictedbirthweightis119.77ounces.Whencigs=20,

bwght=109.49.

Thisisaboutan8.6%drop.

(ii)Notnecessarily.Therearemanyotherfactorsthatcanaffectbirthweight,

particularlyoverallhealthofthemotherandqualityofprenatalcare.Thesecouldbe

correlatedwith

cigarettesmokingduringbirth.Also,somethingsuchascaffeineconsumptioncan

affectbirthweight,andmightalsobecorrelatedwithcigarettesmoking.

(iii)Ifwewantapredictedbwghtof125,thencigs=(125-119.77)/(-.524)

-10.18,orabout-10cigarettes!Thisisnonsense,ofcourse,anditshowswhat

happenswhenwearetryingtopredictsomethingascomplicatedasbirthweightwith

onlyasingleexplanatoryvariable.Thelargestpredictedbirthweightisnecessarily

119.77.Yetalmost700ofthebirthsinthesamplehadabirthweighthigherthan

119.77.

3

(iv)1,176outof1,388womendidnotsmokewhilepregnant,orabout84.7%.

Becauseweareusingonlycigstoexplainbirthweight,wehaveonlyonepredicted

birthweightatcigs=0.Thepredictedbirthweightisnecessarilyroughlyinthe

middleoftheobservedbirthweightsatcigs=0,andsowewillunderpredicthigh

birthrates.

2.5(i)Theinterceptimpliesthatwheninc=0,consispredictedtobenegative

$124.84.This,ofcourse,cannotbetrue,andreflectsthatfactthatthisconsumption

functionmightbeapoorpredictorofconsumptionatverylow-incomelevels.On

theotherhand,onanannualbasis,$124.84isnotsofarfromzero.

=-124.84+.853(30,000)=25,465.16dollars,(ii)Justplug30,000intothe

equation:cons

(iii)TheMPCandtheAPCareshowninthefollowinggraph.Eventhoughthe

interceptisnegative,thesmallestAPCinthesampleispositive.Thegraphstartsat

anannualincomelevel

increaseshousingprices.

(ii)Ifthecitychosetolocatetheincineratorinanareaawayfrommoreexpensive

neighborhoods,thenlog(dist)ispositivelycorrelatedwithhousingquality.This

wouldviolateSLR.4,andOLSestimationisbiased.

(iii)Sizeofthehouse,numberofbathrooms,sizeofthelot,ageofthehome,and

qualityoftheneighborhood(includingschoolquality),arejustahandfuloffactors.

Asmentionedinpart(ii),thesecouldcertainlybecorrelatedwithdist[andlog(dist)].

4

2.7(i)Whenweconditiononinc

E(u|inc

e|inc

)=E(e|inc

0becauseE(e|inc)=E(e)=0.

(ii)Again,whenweconditiononinc

Var(u|inc

e|inc

2Var(e|inc)=e2incbecauseVar(e|inc)=e2.

(iii)Familieswithlowincomesdonothavemuchdiscretionaboutspending;

typically,alow-incomefamilymustspendonfood,clothing,housing,andother

necessities.Higherincomepeoplehavemorediscretion,andsomemightchoose

moreconsumptionwhileothersmoresaving.Thisdiscretionsuggestswider

variabilityinsavingamonghigherincomefamilies.

2.8(i)Fromequation(2.66),

nn21=xiyi/xi.i1i1

Plugginginyi=0+Ixi+uigives

nn21=xi(0Ixiui)xi.i1i1

Afterstandardalgebra,thenumeratorcanbewrittenas

0xi1xxiui.2nnn

ililii1

asPuttingthisoverthedenominatorshowswecanwrite1

nn2nn21=0xi/xi+1+

xiui/xi.i1i1i1i1

Conditionalonthexi,wehave

nn2E(1)=0xi/xi+1i1i1

isgivenbythefirstterminthisequation,becauseE(ui)=0foralli.

Therefore,thebiasin1

Thisbiasisobviouslyzerowhen0=0.Itisalsozerowhenxi=0,whichis

thesameas

iIn

=0.Inthelattercase,regressionthroughtheoriginisidenticaltoregressionwith

anintercept.

5

inpart(i)wehave,conditionalonthexi,(ii)Fromthelastexpressionfor1

)Var(1

n2nn2n2

=xiVarxiui=xixiVar(ui)

i1i1i1i1

2

2

2

n22n22=xixi=/xi2.

i1i1i1

nnn222八(iii)From(2.57),Var(1)=/(xi).Fromthehint,xi

(xi)2,andso

ili1i1

n

)Var()Amoredirectwaytoseethisistowrite(x)2=x2n()2,

whichVar(iill

i1

i1

islessthanxi2unless=0.

i1

n

increasesasincreases(holdingthesumofthe(iv)Foragivensamplesize,the

biasin1

"increasesrelativetoVar().Thebiasinx2fixed).Butasincreases,

thevarianceof

i

111

or'onameansquarederrorisalsosmallwhen0issmall.Therefore,

whetherweprefer11basisdependsonthesizesof0,,andn(inadditiontothe

sizeofxi2).

iIn

2.9(i)Wefollowthehint,notingthatcly=cl(thesampleaverageofclyiiscl

timesthesampleaverageofyi)andc2x=c2.Whenweregressclyionc2xi

(includinganintercept)weuseequation(2.19)toobtaintheslope:

1

(excx)(cc)cc(x)(y)

2in

2

li

1

12n

i

i

i1

nn

i1

(exc)

2i

2

iIn

n

2

c(x)

2

2

i

i1

2

clilc2

(xi)(yi)

2

i

(x)

i1

eri.c2

=(cl)-(c2)=(cl)-[(cl/c2)A](c2)=From(2.17),weobtainthe

interceptasOil

八)becausetheinterceptfromregressingyionxiis(-A)=cl").cl(-

1

1

(ii)Weusethesameapproachfrompart(i)alongwiththefactthat(cly)=c1+

and

(c2x)=c2+.Therefore,(clyi)(cly)=(cl+yi)一(cl+)=yi-

and(c2+xi)-

6

(c2x)=xi-.Soclandc2entirelydropoutoftheslopeformulaforthe

regressionof(cl+yi)

=(cy)-=1Theinterceptis(cx)=(cl+)-"(c2+)=on

(c2+xi),and1101121

八+cl-c2")+c1-c2'=",whichiswhatwewantedtoshow.(0111

(iii)Wecansimplyapplypart(ii)becauselog(clyi)log(cl)log(yi).Inother

words,replaceclwithlog(cl),yiwithlog(yi),andsetc2=0.

(iv)Again,wecanapplypart(ii)withcl=0andreplacingc2withlog(c2)andxi

withlog(xi).八and八aretheoriginalinterceptandslope,then八and

「log(c)\If01110021

2.10(i)Thisderivationisessentiallydoneinequation(2.52),once(1/SSTx)is

broughtinsidethesummation(whichisvalidbecauseSSTxdoesnotdependoni).

Then,justdefine

widi/SSTx.

八,)E[(八)],weshowthatthelatteriszero.But,frompart(i),(ii)

BecauseCov(111

nnwE(u).Becausetheuarepairwiseuncorrelated人)]

=EE[(wuilliiliiili

(theyareindependent),E(ui)E(ui2/n)2/n(becauseE(uiuh)0,ih).

Therefore,iIwiE(ui)ilwi(2/n)(2/n)iIwi0.

nnnA八and,pluggingin(iii)TheformulafortheOLSintercept

is010"()(人)givesOOHOITandare

uncorrelated,(iv)Because1

[Var()Var(八)22/n(2/SST)22/n22/SST,Var(Olxx

whichiswhatwewantedtoshow.

八)2[SST/n2]/SST(v)UsingthehintandsubstitutiongivesVar(Oxx

12222122nx/SSTnx/SSTx.xiliili

2.11(i)Wewouldwanttorandomlyassignthenumberofhoursinthepreparation

coursesothathoursisindependentofotherfactorsthataffectperformanceonthe

SAT.Then,wewouldcollectinformationonSATscoreforeachstudentinthe

experiment,yieldingadataset{(sati,hoursi):iwherenisthenumberof

studentswecanaffordtohaveinthestudy.Fromequation(2.7),weshouldtryto

getasmuchvariationinhoursiasisfeasible.

nn

7

(ii)Herearethreefactors:innateability,familyincome,andgeneralhealthonthe

dayoftheexam.Ifwethinkstudentswithhighernativeintelligencethinktheydo

notneedtopreparefbrtheSAT,thenabilityandhourswillbenegativelycorrelated.

Familyincomewouldprobablybepositivelycorrelatedwithhours,becausehigher

incomefamiliescanmoreeasilyafford

preparationcourses.Rulingoutchronichealthproblems,healthonthedayofthe

examshouldberoughlyuncorrelatedwithhoursspentinapreparationcourse.

(iii)Ifpreparationcoursesareeffective,1shouldbepositive:otherfactorsequal,

an

increaseinhoursshouldincreasesat.

(iv)Theintercept,0,hasausefulinterpretationinthisexample:becauseE(u)=0,

0istheaverageSATscorefbrstudentsinthepopulationwithhours=0.

CHAPTER3

SOLUTIONSTOPROBLEMS

3.1(i)hspercisdefinedsothatthesmalleritis,thelowerthestudentJsstandingin

highschool.Everythingelseequal,theworsethestudent?sstandinginhighschool,

thelowerishis/herexpectedcollegeGPA.

(ii)Justplugthesevaluesintotheequation:

=1.392.0135(20)+.00148(1050)=2.676.colgpa

(iii)ThedifferencebetweenAandBissimply140timesthecoefficientonsat,

becausehspercisthesamefbrbothstudents.SoAispredictedtohavea

score.00148(140).207higher.

(iv)Withhspercfixed,colgpa=.00148sat.Now,wewanttofindsat

suchthat

=.5,so.5=.00148(sat)orsat=.5/(.00148)338.Perhapsnot

surprisingly,acolgpa

largeceterisparibusdifferenceinSATscore-almosttwoandone-halfstandard

deviations-isneededtoobtainapredicteddifferenceincollegeGPAorahalfapoint.

3.2(i)Yes.Becauseofbudgetconstraints,itmakessensethat,themoresiblings

thereareinafamily,thelesseducationanyonechildinthefamilyhas.Tofindthe

increaseinthenumberofsiblingsthatreducespredictededucationbyoneyear,we

solve1=.094(sibs),sosibs=1/.09410.6.

(ii)Holdingsibsandfeducfixed,onemoreyearofmother?seducationimplies.131

yearsmoreofpredictededucation.Soifamotherhasfourmoreyearsofeducation,

hersonispredictedtohaveaboutahalfayear(.524)moreyearsofeducation.

8

(iii)Sincethenumberofsiblingsisthesame,butmeducandfeducareboth

different,thecoefficientsonmeducandfeducbothneedtobeaccountedfbr.The

predicteddifferenceineducationbetweenBandAis.131(4)+.210(4)=1.364.

3.3(i)Ifadultstradeoffsleepfbrwork,moreworkimplieslesssleep(otherthings

equal),so1<0.

(ii)Thesignsof2and3arenotobvious,atleasttome.Onecouldarguethat

more

educatedpeopleliketogetmoreoutoflife,andso,otherthingsequal,theysleep

less(2<0).Therelationshipbetweensleepingandageismorecomplicated

thanthismodelsuggests,andeconomistsarenotinthebestpositiontojudgesuch

things.

(iii)Sincetotwrkisinminutes,wemustconvertfivehoursintominutes:totwrk

=5(60)=300.Thensleepispredictedtofallby.148(300)=44.4minutes.Fora

week,45minuteslesssleepisnotanoverwhelmingchange.

(iv)Moreeducationimplieslesspredictedtimesleeping,buttheeffectisquite

small.Ifweassumethedifferencebetweencollegeandhighschoolisfouryears,

thecollegegraduatesleepsabout45minuteslessperweek,otherthingsequal.

(v)Notsurprisingly,thethreeexplanatoryvariablesexplainonlyabout11.3%ofthe

variationinsleep.Oneimportantfactorintheerrortermisgeneralhealth.

Anotherismaritalstatus,andwhetherthepersonhaschildren.Health(howeverwe

measurethat),maritalstatus,andnumberandagesofchildrenwouldgenerallybe

correlatedwithtotwrk.(Forexample,lesshealthypeoplewouldtendtoworkless.)

3.4(i)Alargerrankfbralawschoolmeansthattheschoolhaslessprestige;this

lowersstartingsalaries.Forexample,arankof100meansthereare99schools

thoughttobebetter.

(ii)1>0,2>0.BothLSATandGPAaremeasuresofthequalityofthe

enteringclass.Nomatterwherebetterstudentsattendlawschool,weexpectthemto

earnmore,onaverage.3,4>0.Thenumberofvolumesinthelawlibrary

andthetuitioncostarebothmeasuresoftheschoolquality.(Costislessobvious

thanlibraryvolumes,butshouldreflectqualityofthefaculty,physicalplant,andso

on.)

(iii)ThisisjustthecoefficientonGPA,multipliedby100:24.8%.

(iv)Thisisanelasticity:aonepercentincreaseinlibraryvolumesimplies

a.095%increaseinpredictedmedianstartingsalary,otherthingsequal.

(v)Itisdefinitelybettertoattendalawschoolwithalowerrank.IflawschoolA

hasaranking20lessthanlawschoolB,thepredicteddifferenceinstartingsalaryis

100(.0033)(20)=

6.6%higherfbrlawschoolA.

9

3.5(i)No.Bydefinition,study+sleep+work+leisure=168.Therefore,ifwe

changestudy,wemustchangeatleastoneoftheothercategoriessothatthesumis

still168.

(ii)Frompart(i),wecanwrite,say,studyasaperfectlinearfunctionoftheother

independentvariables:study=168sleepworkleisure.Thisholdsfbr

everyobservation,soMLR.3violated.

(iii)Simplydroponeoftheindependentvariables,sayleisure:

GPA=0+1study+2sleep+3work+u.

Now,fbrexample,1isinterpretedasthechangeinGPAwhenstudyincreasesby

onehour,

wheresleep,work,anduareallheldfixed.Ifweareholdingsleepandworkfixed

butincreasingstudybyonehour,thenwemustbereducingleisurebyonehour.The

otherslopeparametershaveasimilarinterpretation.

1)=E(八)=八+3.6Conditioningontheoutcomesoftheexplanatory

variables,wehaveE(21

)=1+2=.2+E(E(121

3.7Only(ii),omittinganimportantvariable,cancausebias,andthisistrueonly

whentheomittedvariableiscorrelatedwiththeincludedexplanatoryvariables.The

homoskedasticityassumption,MLR.5,playednoroleinshowingthattheOLS

estimatorsareunbiased.

八.)Further,the(Homoskedasticitywasusedtoobtaintheusualvarianceformulas

fbrthej

degreeofcollinearitybetweentheexplanatoryvariablesinthesample,evenifitis

reflectedinacorrelationashighas.95,doesnotaffecttheGauss-Markov

assumptions.Onlyifthereisaperfectlinearrelationshipamongtwoormore

explanatoryvariablesisMLR.3violated.

3.8WecanuseTable3.2.Bydefinition,2>0,andbyassumption,

Corr(xl,x2)<0.

:E()<.Thismeansthat,onaverageacrossTherefore,thereisa

negativebiasin111

differentrandomsamples,thesimpleregressionestimatorunderestimatestheeffect

ofthe

)isnegativeeventhough>0.trainingprogram.Itisevenpossiblethat

E(11

3.9(i)1<0becausemorepollutioncanbeexpectedtolowerhousingvalues;

notethat1istheelasticityofpricewithrespecttonox.2isprobablypositive

becauseroomsroughlymeasuresthesizeofahouse.(However,itdoesnotallowus

todistinguishhomeswhereeachroomislargefromhomeswhereeachroomissmall.)

(ii)Ifweassumethatroomsincreaseswithqualityofthehome,thenlog(nox)and

roomsarenegativelycorrelatedwhenpoorerneighborhoodshavemorepollution,

somethingthatisoftentrue.WecanuseTable3.2todeterminethedirectionofthe

bias.If2>0and

hasadownwardbias.Butbecause<0,Corr(xl,x2)<0,thesimple

regressionestimator11

10

)thismeansthatthesimpleregression,onaverage,overstatestheimportanceof

pollution.[E(1

ismorenegativethan1.](iii)Thisiswhatweexpectfromthetypicalsample

basedonouranalysisinpart(ii).Thesimpleregressionestimate,1.043,ismore

negative(largerinmagnitude)thanthemultipleregressionestimate,.718.As

thoseestimatesareonlyforonesample,wecanneverknowwhichiscloserto1.

Butifthisisa—typicalIIsample,1iscloserto.718.

3.10(i)Becausexlishighlycorrelatedwithx2andx3,andtheselattervariables

havelargepartialeffectsony,thesimpleandmultipleregressioncoefficientsonxl

candifferbylargeamounts.Wehavenotdonethiscaseexplicitly,butgivenequation

(3.46)andthediscussionwithasingleomittedvariable,theintuitionispretty

straightforward.

and八tobesimilar(subject,ofcourse,towhatwemeanby(ii)Herewe

wouldexpect11

—almostuncorrelatedII).Theamountofcorrelationbetweenx2andx3doesnot

directlyeffectthemultipleregressionestimateonxlifxlisessentiallyuncorrelated

withx2andx3.(iii)Inthiscaseweare(unnecessarily)introducing

multicollinearityintotheregression:x2andx3havesmallpartialeffectsonyandyet

x2andx3arehighlycorrelatedwithxl.Adding

")isxandxlikeincreasesthestandarderrorofthecoefficientonxsubstantially,so

se(

2

311

).likelytobemuchlargerthanse(1

(iv)Inthiscase,addingx2andx3willdecreasetheresidualvariancewithout

causing

八)muchcollinearity(becausexlisalmostuncorrelatedwithx2andx3),sowe

shouldseese(1

).Theamountofcorrelationbetweenxandxdoesnotdirectlyaffectsmaller

thanse(

1

2

3

)se(1

3.11Fromequation(3.22)wehave

1

r-y

i1

n

n

ili

r”

i1

2il

'ilaredefinedintheproblem.Asusual,wemustpluginthetruemodelforyi:

wherether

11

1

ili1

n

Ixil2xi23xi3ui

K

i1

n

2

il

'il=0,rAilxi2=0,andr'ilxil=Thenumeratorofthisexpressionsimplifies

becauser

i1

i1

i1

n

n

n

i1

n

2

iTilaretheresidualsfromtheregressionofxilon.Theseallfollowfromthe

factthatther

"ilhavezerosampleaverageandareuncorrelatedinsamplewithxi2.Sothe

numeratorxi2:ther

canbeexpressedasof

1

3Clxi3r'ilui.1r

2

ili1

i1

i1

n

n

n

Puttingthesebackoverthedenominatorgives

11

i1

3n

r"xrA

i1

2

il

n

ili3

Aru

iIn

n

li

i1

2il

Conditionalonallsamplevaluesonxl,x2,andx3,onlythelasttermisrandomdue

toitsdependenceonui.ButE(ui)=0,andso

)=+E(113

rX

i1

n

n

ili3

9

i1

2il

whichiswhatwewantedtoshow.Noticethatthetermmultiplying3isthe

regression

"il.coefficientfromthesimpleregressionofxi3onr

3.12(i)Theshares,bydefinition,addtoone.Ifwedonotomitoneoftheshares

thentheequationwouldsufferfromperfectmulticollinearity.Theparameterswould

nothaveaceterisparibusinterpretation,asitisimpossibletochangeonesharewhile

holdingalloftheothersharesfixed.(ii)Becauseeachshareisaproportion(and

canbeatmostone,whenallothersharesarezero),itmakeslittlesensetoincrease

sharepbyoneunit.Ifsharepincreasesby.01-whichisequivalenttoaone

percentagepointincreaseintheshareofpropertytaxesintotalrevenue-

12

holdingsharel,shareS,andtheotherfactorsfixed,thengrowthincreasesby

1(.01).Withtheothersharesfixed,theexcludedshare,shareF,mustfallby.01

whensharepincreasesby.01.

3.13(i)Fornotationalsimplicity,defineszx=(zi)xi;thisisnotquitethe

sample

iIn

covariancebetweenzandxbecausewedonotdividebyn-1,butweareonly

usingitto

assimplifynotation.Thenwecanwrite1

1

(z)y

i

i1

n

i

szx

Thisisclearlyalinearfunctionoftheyi:taketheweightstobewi=(zi)/szx.

Toshowunbiasedness,asusualweplugyi=0+Ixi+uiintothisequation,and

simplify:

1

(z)(

i

i1

n

n

Ixiui)

n

szx

0(zi)Iszx(zi)ui

i1

i1

szx

1

n

(z)u

i

i1

i

szx

whereweusethefactthat(zi)=0always.Nowszxisafunctionofthezi

andxiandthe

i1

expectedvalueofeachuiiszeroconditionalonallziandxiinthesample.

Therefore,conditional

onthesevalues,

)E(11

(Z)E(u)

i

i

i1

n

szx

1

becauseE(ui)=0foralli.(ii)Fromthefourthequationinpart(i)wehave(again

conditionalontheziandxiinthesample),

13

)VarVar(1(z)u(z)Var(u)2iiiii12szx

n2nni12szx

2(z)ii1

2szx

becauseofthehomoskedasticityassumption[Var(ui)=2foralli].Giventhe

definitionofszx,thisiswhatwewantedtoshow.

")=2/[(x)2].Nowwecanrearrangetheinequalityinthe(iii)Weknow

thatVar(i1

iIn

2hint,dropfromthesamplecovariance,andcancelneverywhere,toget

[(zi)2]/szx>-In

i1

)Var()whichiswhatl/[(xi)2].Whenwemultiplythroughby

2wegetVar(11

iIn

wewantedtoshow.

CHAPTER4

4.1(i)and(iii)generallycausethetstatisticsnottohaveatdistributionunderHO.

HomoskedasticityisoneoftheCLMassumptions.Animportantomittedvariable

violatesAssumptionMLR.3.TheCLMassumptionscontainnomentionofthe

samplecorrelationsamongindependentvariables,excepttoruleoutthecasewhere

thecorrelationisone.

4.2(i)HO:3=0.Hl:3>0.

(ii)Theproportionateeffectonsalaryis.00024(50)=.012.Toobtainthe

percentage

effect,wemultiplythisby100:1.2%.Therefore,a50pointceterisparibus

increaseinrosispredictedtoincrease

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论