版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精学习目标1.了解几何概型与古典概型的区别;2。了解几何概型的定义及其特点;3.会用几何概型的概率计算公式求几何概型的概率.知识点一几何概型的概念思考往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这个试验可能出现的结果是有限个,还是无限个?若没有人为因素,每个试验结果出现的可能性是否相等?梳理(1)几何概型的定义:设D是一个可度量的区域(例如________、__________、____________等),每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会________;随机事件A的发生可以视为恰好取到区域D内的________________________.这时,事件A发生的概率与d的测度(________、________、________等)成正比,与d的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.(2)几何概型的特点:①试验中所有可能出现的结果(基本事件)有__________________.②每个基本事件出现的可能性________.知识点二几何概型的概率公式思考既然几何概型的基本事件有无限多个,难以像古典概型那样计算概率,那么如何度量事件A所包含的基本事件数与总的基本事件数之比?梳理几何概型的概率公式:一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内"为事件A,则事件A发生的概率P(A)=eq\f(d的测度,D的测度)。知识点三用模拟方法估计概率1.随机数的产生(1)计算器上产生(0,1)的随机数的函数是______函数.(2)Excel软件产生[0,1]区间上的随机数的函数为“____________".(3)[a,b]上随机数的产生利用计算器或计算机产生[0,1]上的随机数x=RAND,然后利用伸缩和平移交换,x=______________就可以得到[a,b]内的随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能的.2.用模拟方法估计概率的步骤:(1)把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围.(2)用计算机(或计算器)产生指定范围内的随机数.(3)统计试验的结果,代入几何概型概率公式估得概率.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题.类型一几何概型的概念例1判断下列试验中事件A发生的概型是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.求甲获胜的概率.反思与感悟判断一个概率是古典概型还是几何概型的步骤:(1)判断一次试验中每个基本事件发生的概率是否相等,若不相等,那么这个概率既不是古典概型也不是几何概型;(2)如果一次试验中每个基本事件发生的概率相等,再判断试验结果的有限性.当试验结果有有限个时,这个概率是古典概型;当试验结果有无限个时,这个概率是几何概型.跟踪训练1判断下列试验是否为几何概型,并说明理由:(1)某月某日,某个市区降雨的概率;(2)设A为圆周上一定点,在圆周上等可能地任取一点与A连接,求弦长超过半径的概率.类型二几何概型的计算命题角度1与长度有关的几何概型例2某公共汽车站,每隔15分钟有一辆车发出,并且发出前在车站停靠3分钟,求乘客到站候车时间大于10分钟的概率.引申探究1.本例中在题设条件不变的情况下,求候车时间不超过10分钟的概率.2.本例中在题设条件不变的情况下,求乘客到达车站立即上车的概率.反思与感悟若一次试验中所有可能的结果和某个事件A包含的结果(基本事件)都对应一个长度,如线段长、时间区间长、距离、路程等,那么需要先求出各自相应的长度,然后运用几何概型的概率计算公式求出事件A发生的概率.跟踪训练2平面上画了一些彼此相距2a的平行线,把一枚半径为r(r<a)的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.命题角度2与面积有关的几何概型例3设点M(x,y)在区域{(x,y)||x|≤1,|y|≤1}上均匀分布出现,求:(1)x+y≥0的概率;(2)x+y<1的概率;(3)x2+y2≥1的概率.反思与感悟如果每个基本事件可以理解为从某个特定的几何区域内随机地取一点,某个随机事件的发生理解为恰好取到上述区域的某个指定区域内的点,且该区域中的每一个点被取到的机会都一样,这样的概率模型就可以视为几何概型,并且这里的区域可以用面积表示,利用几何概型的概率公式求解.跟踪训练3欧阳修《卖油翁》中写到,(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌沥之,自钱孔入而钱不湿.若铜线是直径为3cm的圆,中间有一个边长为1cm的正方形孔,若随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴正好落入孔中的概率是________.命题角度3与体积有关的几何概型例4三棱锥D-ABC的体积为V,在其内部任取一点P,求三棱锥P—ABC的体积小于eq\f(1,3)V的概率.反思与感悟如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为P(A)=eq\f(构成事件A的区域体积,试验的全部结果所构成的区域体积)。解决此类问题的关键是注意几何概型的条件,分清所求的概率是与体积有关还是与长度有关,不要将二者混淆.跟踪训练4在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为______.1.下列概率模型:①从区间[-10,10]内任取一个数,求取到绝对值不大于1的数的概率;②从区间[-10,10]内任取一个整数,求取到大于1且小于5的数的概率;③在一个边长为4cm的正方形ABCD内取一点P,求点P离正方形的中心小于1cm的概率.其中,是几何概型的为________.2.面积为S的△ABC,D是BC的中点,向△ABC内部投一点,那么点落在△ABD内的概率为________.3.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,灯与两端距离都大于2m的概率为________.4.在装有5升纯净水的容器中不小心混入一个病毒,现从中随机取出1升水,那么这1升水中含有病毒的概率是________.1.几何概型适用于试验结果是无穷多且事件是等可能发生的概率类型.2.几何概型主要用于解决与长度、面积、体积等有关的题目.3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解.
答案精析问题导学知识点一思考出现的结果是无限个;每个结果出现的可能性是相等的.梳理线段平面图形立体图形都一样某个指定区域d中的点长度面积体积梳理(1)无限多个(2)相等知识点二思考由定义知,事件发生的概率与构成该事件的区域测度(如长度、面积、体积)成正比,故可用区域的测度代替基本事件数.知识点三1.(1)RAND(2)RAND()(3)x1*(b—a)+a题型探究例1解(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分",概率可以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型.跟踪训练1解(1)不是几何概型,因为它不具有等可能性;(2)是几何概型,因为它具有无限性与等可能性.例2解如图所示,设相邻两班车的发车时刻为T1,T2,T1T2=15.设T0T2=3,TT0=10,记“乘客到站候车时间大于10分钟"为事件A。则当乘客到站时刻t落到T1T上时,事件A发生.因为T1T=15-3-10=2,T1T2=15,所以P(A)=eq\f(T1T,T1T2)=eq\f(2,15)。引申探究1.解由原题解析图可知,当t落在TT2上时,候车时间不超过10分钟,故所求概率P=eq\f(TT2,T1T2)=eq\f(13,15).2.解由原题解析图可知,当t落在T0T2上时,乘客立即上车,故所求概率P=eq\f(T0T2,T1T2)=eq\f(3,15)=eq\f(1,5).跟踪训练2解记“硬币不与任何一条平行线相碰”为事件A,如图,由图可知:硬币圆心在线段AB上的任意一点的出现是等可能的.圆心在线段CD(不含点C、D)上出现时硬币不与平行线相碰,所以P(A)=eq\f(线段CD的长度,线段AB的长度)=eq\f(2a-2r,2a)=eq\f(a-r,a).例3解如图,满足|x|≤1,|y|≤1的点(x,y)组成一个边长为2的正方形(ABCD)区域(含边界),S正方形ABCD=4。(1)x+y=0的图象是直线AC,满足x+y≥0的点在AC的右上方(含AC),即在△ACD内(含边界),而S△ACD=eq\f(1,2)·S正方形ABCD=2,所以P(x+y≥0)=eq\f(2,4)=eq\f(1,2).(2)设E(0,1),F(1,0),则x+y=1的图象是EF所在的直线,满足x+y<1的点在直线EF的左下方,即在五边形ABCFE内(不含边界EF),而S五边形ABCFE=S正方形ABCD-S△EDF=4-eq\f(1,2)=eq\f(7,2),所以P(x+y<1)=eq\f(S五边形ABCFE,S正方形ABCD)=eq\f(\f(7,2),4)=eq\f(7,8).(3)满足x2+y2=1的点是以原点为圆心的单位圆O,S⊙O=π,所以P(x2+y2≥1)=eq\f(S正方形ABCD-S⊙O,S正方形ABCD)=eq\f(4-π,4)。跟踪训练3eq\f(4,9π)解析∵S正方形=1cm2,S圆=π·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))2=eq\f(9π,4)(cm2),∴P=eq\f(S正方形,S圆)=eq\f(4,9π).例4解如图,设三棱锥D—ABC的底面ABC的面积为S,高为h,则VD—ABC=eq\f(1,3)Sh=V。设平面EFG是距底面ABC的距离为eq\f(1,3)h的平面,则点P落在平面EFG与平面ABC之间时,可以保证三棱锥P—ABC的体积小于eq\f(1,3)V.由于三棱锥D-EFG的底面EFG的面积为eq\f(4,9)S,高为eq\f(2,3)h,因此VD—EFG=eq\f(1,3)×eq\f(4,9)S·eq\f(2,3)h=eq\f(8,27)V,因此所求概率P=eq\f(V-\f(8,27)V,V)=eq\f(19,27).跟踪训练4eq\f(2\r(3),3π)解析由题意可知这是一个几何概型,棱长为1的正方体的体积V1=1,球的直径是正方体的体对角线长,故球的半径R=eq\f(\r(3),2),球的体积V2=eq\f(4,3)π×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),2)))3=eq\f(\r(3),2)π,则此点落在正方体内部的概率P=eq\f(V1,V2)=eq\f(2\r(3),3π)。当堂训练1.①③解析①是,因为区间[-10,10]和[-1,1]内都有无限多个数可取(无限性),且在这两个区间内每个数被取到的可能性相同(等可能性);②不是,因为区间[-10,10]内的整数只有21个,不满足无限性;③是,因为在边长为4cm的正方形和半径为1cm的圆内均有无数多个点(无限性),且这两个区域内的任何一个点被取到的可能性相同(等可能性).2.eq\f(1,2)解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版安置房房票买卖合同
- 2024高校产学研合作研发协议
- 2024重要会议活动场地出租合同书版B版
- 2024版五金建材销售合同范本
- 2024门面房的租赁合同
- 2024甲乙双方关于电商平台运营合作合同
- 2025年城市地下空间开发承包合同3篇
- 2025年度安置房市场调研与销售策略咨询合同3篇
- 音像店电梯采购协议
- 聘用合同细则图书馆教师招聘
- 小学五年级上册数学寒假作业每日一练
- 三年级上册语文期末考试作文押题预测
- 2025年首都机场集团招聘笔试参考题库含答案解析
- 期末测试卷-2024-2025学年语文四年级上册统编版
- 安徽省芜湖市2023-2024学年高一上学期期末考试 数学 含解析
- 维克多高中英语3500词汇
- 乙丙橡胶电力电缆绝缘一步法硅烷交联工艺
- 中止施工安全监督申请书(范例)
- 世界各国标准钢号对照表
- 大树移植方案
- 除尘器安装技术交底记录
评论
0/150
提交评论