【中考辅导分类】三角形全等中考专题_第1页
【中考辅导分类】三角形全等中考专题_第2页
【中考辅导分类】三角形全等中考专题_第3页
【中考辅导分类】三角形全等中考专题_第4页
【中考辅导分类】三角形全等中考专题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6-三角形全等【知识要点】1.两个能够重合的三角形叫做全等三角形,全等三角形的对应边相等,对应角相等.2.全等三角形的判定方法有(1)SAS;(2)ASA;(3)AAS;(4)SSS.(5)HL.3.两个三角形的两边和一角对应相等,或两个三角形的三个角对应相等,这两个三角形不一定全等.【复习指导】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E,C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF是对应边.2.判定两个三角形全等的解题思路: 找夹角——SAS已知两边 找另一边——SSS 边为角的对边——找任一角——AAS 找夹角的另一边——SAS已知一边一角 边为角的邻边找夹边的另一角——ASA 找边的对角——AAS 找夹边——ASA已知两角 找任一边——AAS3.运用三角形全等可以证明两线段或两角相等,在直接找不到两个全等三角形时,可考虑添加辅助线构造全等三角形.【思想方法】1.转化思想:应用全等三角形的知识解决测河宽、测池塘宽、测工件内径等实际问题就是转化思想的运用.2.运动变化思想:在研究三角形全等时,经常会出现三角形按照某种特定的规律变化,需要运用运动变化的思想进行解决.3.构造图形法:在直接找不到两个全等三角形时,常常通过平移、对称、旋转等图形变换的方法构造全等三角形.4.分析综合法:从已知条件出发探索解题途径的方法叫综合法;从结论出发不断寻找使结论成立的条件与已知条件关系的方法叫分析法;两头凑的方法就是综合运用分析综合法去寻找证题的一种方法.【证明三角形全等】三角形全等是证明线段相等,角相等最基本、最常用的方法。(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.例1已知:如图1,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC.那么图中全等的三角形有___对.(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2如图2,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)_____.(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例3已知:如图3,AB=AC,∠1=∠2.求证:AO平分∠BAC.(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.例4已知:如图4,在Rt△ABC中,∠ACB=90º,AC=BC,D为BC的中点,CE⊥AD于E,交AB于F,连接DF.求证:∠ADC=∠BDF.说明:常见的构造三角形全等的方法有如下三种:①涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;②涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;③证明两条线段的和等于第三条线段时,用“截长补短”法可以构造一对全等三角形.(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力﹒在近年中考出现的与全等三角形有关的实际问题,体现了这一数学理念,应当引起同学们的重视.例5要在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A,B两点间的距离﹒请你用学过的数学知识按以下要求设计一测量方案﹒(1)画出测量图案﹒(2)写出测量步骤(测量数据用字母表示)﹒图5(3)计算A、B的距离(写出求解或推理过程,结果用字母表示)﹒四、借助角平分线造全等1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.五、旋转例1正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.例2D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。当绕点D转动时,求证DE=DF。若AB=2,求四边形DECF的面积。【基础练习】判断题1.两边和其中一边所对的角对应相等的两个三角形不一定是全等三角形()2.有三个角对应相等的两个三角形全等()单选题1.已知:如图,∠BAC=∠EDF,∠C=∠F,要使△ABC≌△DEF,所缺条件是[]A.∠B=∠EB.∠1=∠2C.AC=DFD.∠C=∠F2.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是[]A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠23.下列条件:①已知两腰;②已知底边和顶角;③已知顶角与底角;④已知底边和底边上的高,能确定一个等腰三角形的是[]A.①和②B.③和④C.②和④D.①和④填空题4.如图,已知:∠1=∠2,∠3=∠4,要证BD=CD,需先证△AEB≌△AEC,根据是_________再证△BDE≌△______,根据是__________. 已知:如图,ACBC于C,DEAC于E,ADAB于A,BC=AE.若AB=5,则AD=___________.证明题6.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB7.如图,已知:AD∥BC,AD=BC.求证:AB∥CD.8.如图,已知:AC=DF,AC∥FD,AE=DB,求证:△ABC≌△DEF【综合测试】DCDCAB1、如图,△ABC≌△BAD,点A点B,点C和点D是对应点。如果AB=6厘米,BD=5厘米,AD=4厘米,那么BC的长是()。(A)4厘米(B)5厘米(C)6厘米(D)无法确定2、如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A.120°B.70°C.60°D.50°.3.使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等4.在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()BCDA.若添加条件AC=AˊCˊ,则△ABC≌△A′B′CBCDB.若添加条件BC=B′C′,则△ABC≌△A′B′C′C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′5.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去6.将一张长方形纸片按如图所示的方式折叠,为折痕,则的度数为()A.60°B.75°C.90°D.95°7.下列说法中不正确的是()A.全等三角形一定能重合B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等8.(2004·山东潍坊市)如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙9.9.根据图中所给条件,判定____这两个三角形全等.()①和②B.②和④C.①和④D.②和③如右图所示,已知△ABC和△BDE都是等边三角形。则下列结论:①AE=CD;②BF=BG;③HB平分∠AHD;④∠AHC=600,⑤△BFG是等边三角形;⑥FG∥AD。其中正确的有()A3个B4个C5个D6个二.填空题11.如图示,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其它对应角分别为______________________,对应边分别为_____________________.图5图5ADCB第12题图ADBCO第11题图第13题图12.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______;13.如图示,点B在AE上,∠CBE=∠DBE,要使ΔABC≌ΔABD,还需添加一个条件是__________.(填上你认为适当的一个条件即可)14.如图5,于O,BO=OD,图中共有全等三角形对。15.如右图示,正方形ABCD中,E、F分别在AB、BC上,AC、BD交于O点且AC⊥BD,∠EOF=90o,已知AE=3,CF=4,则S△BEF为___.ABDCABDCAC=4,则AD的取值范围是17.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.ADCB第19题图E18.如图10,E点为ADCB第19题图E交AB与M点,交CN于N点,若MB=6cm,CN=4cm,则AB=_____.19.如图示,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则的面积为______.20.如右图示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为()A.80°B.100°C.60°D.45°.三、证明题21.如图示,已知AB=AC,BD=DC,图中有相等的角吗?请找出来

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论