版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲变量的相关性、回归分析及独立性检验一、知识回顾1.如何判断两个变量的线性相关:如果在散点图中,2个变量数据点分布在一条直线附近,则这2个变量之间具有线性相关关系。2.所求直线方程叫做回归直线方程;其中回归直线方程必过中心点3.相关系数的性质(1)|r|≤1.(2)|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.4.残差平方和越小,即模型拟合效果越好5.两个分类变量的独立性检验:(1)假设结论不成立,即“两个分类变量没有关系”.(2)在此假设下计算随机变量(3)根据随机变量K2查表得“两个分类变量没有关系”的概率,用1减去此概率即得有联系的概率典型例题:例1.(2009宁夏海南卷)对变量x,y有观测数据理力争(,)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(,)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()。(A)变量x与y正相关,u与v正相关(B)变量x与y正相关,u与v负相关(C)变量x与y负相关,u与v正相关(D)变量x与y负相关,u与v负相关变式1.(2007韶关一模文、理)甲、乙、丙、丁四位同学各自对、两变量的线性相关性作试验,并用回归分析方法分别求得相关系数与残差平方和如下表:甲乙丙丁0.820.780.690.85106115124103则哪位同学的试验结果体现、两变量更强的线性相关性?()甲乙丙丁例2.一系列样本点的回归直线方程为若则变式1.某地2008年第二季各月平均气温(℃)与某户用水量(吨)如下表,根据表中数据,用最小二乘法求得用水量关于月平均气温的线性回归方程是()月份456月平均气温202530月用水量152028AB.C.D.例3.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)例4.(2008惠州一模)对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:又发作过心脏病未发作过心脏病合计心脏搭桥手术39157196血管清障手术29167196合计68324392试根据上述数据计算k2=_______________比较这两种手术对病人又发作心脏病的影响有没有差别第2讲变量的相关性、回归分析及独立性检验课后作业:姓名:学号:1.若施化肥量x与小麦产量y之间的回归直线方程为,当施化肥量为50kg时,预计小麦产量为2.下表是某厂~月份用水量(单位:百吨)的一组数据:月份用水量由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归直线方程是,则3.一组数据的平均数是,方差是,若将这组数据中的每一个数据都加上,得到一组新数据,则所得新数据的平均数和方差分别是()A. B. C. D.4.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x,已知这组数据的平均数为6,则这组数据的方差为()A.6 B. C.66 D.6.55.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,476.(2008广州调研文、理)某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是人.7.(2008韶关一模文、理)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图)。为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(元)/月收入段应抽出人.8.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是.9.为考察高中生性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:性别与喜欢数学课程列联表
喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算得,高中生的性别与是否喜欢数学课程之间是否有关系?为什么?10.在一段时间内,某种商品的价格x(万元)和需求量y(t)之间的一组数据如下表:价格x1.41.61.822.2需求量y1210753(1)画出散点图;(2)求出Y对X的回归直线方程;(3)如果价格定为1.9万元,预测需求量大约是多少?开始输入否是开始输入否是输出结束第11题图甲乙1234甲:乙:(Ⅰ)根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;(Ⅱ)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入按程序框图进行的运算,问输出的大小为多少?并说明的统计学意义。12.为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.0.031000.0250.0150.0059080706050组0.031000.0250.0150.0059080706050组距频率率率分数(1)求出物理成绩低于50分的学生人数;(2)估计这次考试物理学科及格率(60分及以上为及格)(3)从物理成绩不及格的学生中任选两人,求他们成绩至少有一个不低于50分的概率.第2讲变量的相关性、回归分析及独立性检验一、知识回顾1.如何判断两个变量的线性相关:如果在散点图中,2个变量数据点分布在一条直线附近,则这2个变量之间具有线性相关关系。2.所求直线方程叫做回归直线方程;其中回归直线方程必过中心点3.相关系数的性质(1)|r|≤1.(2)|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.4.残差平方和越小,即模型拟合效果越好5.两个分类变量的独立性检验:(1)假设结论不成立,即“两个分类变量没有关系”.(2)在此假设下计算随机变量(3)根据随机变量K2查表得“两个分类变量没有关系”的概率,用1减去此概率即得有联系的概率典型例题:例1.(2009宁夏海南卷)对变量x,y有观测数据理力争(,)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(,)(i=1,2,…,10),得散点图2.由这两个散点图可以判断。(A)变量x与y正相关,u与v正相关(B)变量x与y正相关,u与v负相关(C)变量x与y负相关,u与v正相关(D)变量x与y负相关,u与v负相关解析:由这两个散点图可以判断,变量x与y负相关,u与v正相关,选C变式1.(2007韶关一模文、理)甲、乙、丙、丁四位同学各自对、两变量的线性相关性作试验,并用回归分析方法分别求得相关系数与残差平方和如下表:甲乙丙丁0.820.780.690.85106115124103则哪位同学的试验结果体现、两变量更强的线性相关性?(D)甲乙丙丁例2.一系列样本点的回归直线方程为若则31变式1.某地2008年第二季各月平均气温(℃)与某户用水量(吨)如下表,根据表中数据,用最小二乘法求得用水量关于月平均气温的线性回归方程是(D)月份456月平均气温202530月用水量152028AB.C.D.例3.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)解:(1)散点图略(2);所求的回归方程为(3),预测生产100吨甲产品的生产能耗比技改前降低(吨)例4.(2008惠州一模)对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:又发作过心脏病未发作过心脏病合计心脏搭桥手术39157196血管清障手术29167196合计68324392试根据上述数据计算k2=_______________比较这两种手术对病人又发作心脏病的影响有没有差别____________.1.78不能作出这两种手术对病人又发作心脏病的影响有差别的结论.第2讲变量的相关性、回归分析及独立性检验课后作业:姓名:学号:1.若施化肥量x与小麦产量y之间的回归直线方程为,当施化肥量为50kg时,预计小麦产量为4502.下表是某厂~月份用水量(单位:百吨)的一组数据:月份用水量由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归直线方程是,则3.一组数据的平均数是,方差是,若将这组数据中的每一个数据都加上,得到一组新数据,则所得新数据的平均数和方差分别是(D)A. B. C. D.4.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x,已知这组数据的平均数为6,则这组数据的方差为AA.6 B. C.66 D.6.55.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是(D)A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,476.(2008广州调研文、理)某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是760人.7.(2008韶关一模文、理)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图)。为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(元)/月收入段应抽出25人.8.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是.,9.为考察高中生性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:性别与喜欢数学课程列联表
喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算得,高中生的性别与是否喜欢数学课程之间是否有关系?为什么?10.在一段时间内,某种商品的价格x(万元)和需求量y(t)之间的一组数据如下表:价格x1.41.61.822.2需求量y1210753(1)画出散点图;(2)求出Y对X的回归直线方程;(3)如果价格定为1.9万元,预测需求量大约是多少?第11题图甲第11题图甲乙1234甲:乙:(Ⅰ)根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;(Ⅱ)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入按程序框图进行的运算,问输出的大小为多少?并说明的统计学意义。解:(Ⅰ)茎叶图如右.统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得更整齐;甲乙12340甲乙123406044760679071332519④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散.(Ⅱ)表示株甲树苗高度的方差,是描述树苗高度离散程度的量.值越小,表示长得越整齐,值越大,表示长得越参差不齐.12.为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.解:(Ⅰ)百米成绩在[16,17)内的频率为0.321=0.320.321000=320∴估计该年段学生中百米成绩在[16,17)内的人数为320人。(Ⅱ)设图中从左到右前3个组的频率分别为3x,8x,19x依题意,3x+8x+19x+0.321+0.081=1,∴x=0.02设调查中随机抽取了n个学生的百米成绩,则∴n=50∴调查中随机抽取了5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年航空器维修与检修服务合同范本3篇
- 2025年度船舶船舶动力系统安全评估与风险控制合同3篇
- 2025年度智能电网设备采购与安装合同6篇
- 2024年详尽版:国际货运代理与多式联运合同
- 2024年购销合同实例:买卖合同的详细操作流程
- 2024铣刨作业质量控制与验收合同3篇
- 2024年高端机床制造技术与专利许可协议
- 2024年沿海地区海鲜收购合同
- 2025年度智慧城市建设采购合同管理创新方案3篇
- 2024年版:工程担保服务协议2篇
- 大学美育-美育赏湖南智慧树知到期末考试答案章节答案2024年湖南高速铁路职业技术学院
- 数据结构期末考试题及答案
- 广州市番禺区2022-2023学年七年级上学期期末统考英语试题
- 重大事故隐患判定标准与相关事故案例培训课件(建筑)
- DZ/T 0430-2023 固体矿产资源储量核实报告编写规范(正式版)
- 2024浙江宁波市象山县人力资源和社会保障局招聘历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 2024年一级建造师考试思维导图-市政
- 蔗糖羟基氧化铁咀嚼片-临床用药解读
- 幼儿园小班教案《垫子多玩》
- 高压架空输电线路反事故措施培训课件
- 论药品管理在药品安全中的重要性
评论
0/150
提交评论