版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
测量平差基础课件1第一页,共八十三页,编辑于2023年,星期日物理实验基本程序和要求1.实验课前预习(1)预习与本实验相关的全部内容。(2)写出预习报告(实验题目、目的、原理、主要计算公式、原理简图),准备原始实验数据记录表格。2.课堂实验操作(1)上课需带实验讲义、笔、尺、计算器等。(2)必须在了解仪器的工作原理、使用方法、注意事项的基础上,方可进行实验。2第二页,共八十三页,编辑于2023年,星期日(3)仪器安装调试后经教师检查无误后方可进行实验操作。(4)注意观察实验现象,认真记录测量数据,将数据填入实验记录表格,数据须经指导老师检查及签字。(5)实验后请将使用的仪器整理好,归回原处。经教师允许后方可离开实验室。(6)课后按要求完成实验报告,并在下次实验时交来。3第三页,共八十三页,编辑于2023年,星期日第一章目录第1节测量与误差第2节随机误差的处理第3节实验错误数据的剔除第4节测量不确定度及估算第5节有效数字及运算规则第6节实验数据处理基本方法4第四页,共八十三页,编辑于2023年,星期日一、测量测量就是借助仪器将待测量与同类标准量进行比较,确定待测量是该同类单位量的多少倍的过程称作测量。测量数据要写明数值的大小和计量单位。测量的要素:对象,单位,方法,准确度。倍数→读数+单位→数据
§1测量与误差1、测量的含义5第五页,共八十三页,编辑于2023年,星期日在人类的发展历史上,不同时期,不同的国家,
乃至不同的地区,同一种物理量有着许多不同
的计量单位。如长度单位就分别有码、英尺、市尺和米等。为了便于国际交流,国际计量大会于1960年确定了国际单位制(SI),它规定了以米、千克、秒、安培、开尔文、摩尔、坎德拉作为基本单位,其他物理量(如力、能量、电压、磁感应强度等)均作为这些基本单位的导出单位。6第六页,共八十三页,编辑于2023年,星期日2.测量的分类按方法分类:按条件分类:直接测量间接测量
等精度测量非等精度测量√7第七页,共八十三页,编辑于2023年,星期日测量直接测量间接测量数值单位8第八页,共八十三页,编辑于2023年,星期日二、误差任何测量结果都有误差!1、真值:待测量客观存在的值(绝对)误差:真值测量值相对误差:9第九页,共八十三页,编辑于2023年,星期日.相对误差常用百分比表示。它表示绝对误差在整个物理量中所占的比重,它是无单位的一个纯数,所以既可以评价量值不同的同类物理量的测量,也可以评价不同物理量的测量,从而判断它们之间优劣。如果待测量有理论值或公认值,也可用百分差来表示测量的好坏。即:10第十页,共八十三页,编辑于2023年,星期日2、误差的分类随机误差随机性可通过多次测量来减小系统误差恒定性可用特定方法来消除或减小11第十一页,共八十三页,编辑于2023年,星期日系统误差保持不变或以可预知方式变化的误差分量
来源:①仪器固有缺陷;②实验理论近似或方法不完善;③实验环境、测量条件不合要求;④操作者生理或心理因素。12第十二页,共八十三页,编辑于2023年,星期日3、测量的精密度、准确度、精确度1)精密度。表示重复测量所得数据的相互接近程度(离散程度)。2)准确度,表示测量数据的平均值与真值的接近程度。。3)精确度。是对测量数据的精密度和准确度的综合评定。13第十三页,共八十三页,编辑于2023年,星期日
以打靶为例来比较说明精密度、准确度、精确度三者之间的关系。图中靶心为射击目标,相当于真值,每次测量相当于一次射击。(a)准确度高、(b)精密度高、(c)精密度、准确精密度低准确度低度均高14第十四页,共八十三页,编辑于2023年,星期日一、随机误差的正态分布规律大量的随机误差服从正态分布规律
0
正态分布误差概率密度函数标准误差§2随机误差的处理15第十五页,共八十三页,编辑于2023年,星期日随机误差介于小区间内的概率为:的物理意义:0随机误差介于区间(-a,a)内的概率为-aa(-a,a)为置信区间、P为置信概率16第十六页,共八十三页,编辑于2023年,星期日满足归一化条件可以证明:极限误差0总面积=117第十七页,共八十三页,编辑于2023年,星期日18第十八页,共八十三页,编辑于2023年,星期日②对称性①单峰性③有界性正态分布特征:0④抵偿性即19第十九页,共八十三页,编辑于2023年,星期日二、随机误差估算—标准偏差误差:偏差:标准误差标准偏差:20第二十页,共八十三页,编辑于2023年,星期日的物理意义:作任一次测量,随机误差落在区间的概率为。小,小误差占优,数据集中,重复性好。大,数据分散,随机误差大,重复性差。2.标准偏差的物理含义21第二十一页,共八十三页,编辑于2023年,星期日总面积=122第二十二页,共八十三页,编辑于2023年,星期日三、测量结果最佳值—算术平均值算术平均值是真值的最佳估计值多次测量求平均值可以减小随机误差23第二十三页,共八十三页,编辑于2023年,星期日对于服从正态分布的随机误差,出现在±S区间内概率为68.3%,与此相仿,同样可以计算,在相同条件下对某一物理量进行多次测量,其任意一次测量值的误差落在-3S到+3S区域之间的可能性(概率)。其值为1.拉依达判据§3实验中错误数据的剔除24第二十四页,共八十三页,编辑于2023年,星期日如果用测量列的算术平均替代真值,则测量列中约有99.7%的数据应落在区间内,如果有数据出现在此区间之外,则我们可以认为它是错误数据,这时我们应把它舍去,这样以标准偏差Sx的3倍为界去决定数据的取舍就成为一个剔除坏数据的准则,称为拉依达准则。但要注意的是数据少于10个时此准则无效。25第二十五页,共八十三页,编辑于2023年,星期日对于服从正态分布的测量结果,其偏差出现在±3S附近的概率已经很小,如果测量次数不多,偏差超过±3S几乎不可能,因而,用拉依达判据剔除疏失误差时,往往有些疏失误差剔除不掉。另外,仅仅根据少量的测量值来计算S,这本身就存在不小的误差。因此当测量次数不多时,不宜用拉依达判据,但可以用肖维勒准则。按此判据给出一个数据个数n相联系的系数Gn,当已知数据个数n,算术平均值和测量列标准偏差S,则可以保留的测量值xi的范围为2.肖维勒准则26第二十六页,共八十三页,编辑于2023年,星期日Gn系数表
nGnnGnnGn31.38112.00252.3341.54122.03302.3951.65132.07402.4961.73142.10502.5871.80152.131002.8081.86162.1591.92182.20101.96202.2427第二十七页,共八十三页,编辑于2023年,星期日一、不确定度基本概念被测量的真值所处的量值范围作一评定测量结果:mm(P=0.68)真值以68%的概率落在区间内§4测量不确定度及估算测量值X和不确定度单位置信度28第二十八页,共八十三页,编辑于2023年,星期日二、不确定度简化估算方法A类分量:多次测量用统计方法评定的分量29第二十九页,共八十三页,编辑于2023年,星期日只考虑仪器误差
测量值与真值之间可能产生的最大误差常用仪器误差见下表B类分量:
用其它非统计方法评定的分量30第三十页,共八十三页,编辑于2023年,星期日仪器名称量程分度值仪器误差钢直尺0~300mm1mm±0.1mm钢卷尺0~1000mm1mm±0.5mm游标卡尺0~300mm0.02,0.05mm分度值螺旋测微计0~100mm0.01mm±0.004mm物理天平1000g100mg±50mg水银温度计-30~300℃1℃,0.2℃,0.1℃分度值读数显微镜0.01mm±0.004mm数字式电表最末一位的一个单位指针式电表0.1,0.2,0.5,1.01.5,2.5,5.0±量程×a%31第三十一页,共八十三页,编辑于2023年,星期日仪器不确定度的估计①.根据说明书②.由仪器的准确度级别来计算举例:32第三十二页,共八十三页,编辑于2023年,星期日33第三十三页,共八十三页,编辑于2023年,星期日34第三十四页,共八十三页,编辑于2023年,星期日②.未给出仪器误差时估计:连续可读仪器:非连续可读仪器:最小分度/2最小分度取末位±1数字式的仪器:举例:35第三十五页,共八十三页,编辑于2023年,星期日36第三十六页,共八十三页,编辑于2023年,星期日A.由仪器的准确度表示②.仪器误差的确定:37第三十七页,共八十三页,编辑于2023年,星期日数字秒表:最小分度=0.01sC.未给出仪器误差时非连续可读仪器38第三十八页,共八十三页,编辑于2023年,星期日总不确定度:由A类分量和B类分量按“方、和、根”方法合成
三、总不确定度的合成39第三十九页,共八十三页,编辑于2023年,星期日四、测量结果表达式:单次多次40第四十页,共八十三页,编辑于2023年,星期日间接测量量的最佳值为:1、间接测量量的最佳值直接测量量的最佳值为五、间接测量量的不确定度41第四十一页,共八十三页,编辑于2023年,星期日2、间接测量量不确定度的合成※不确定度传递系数42第四十二页,共八十三页,编辑于2023年,星期日例如:间接测量量的不确定度是每一个直接测量量的合成。两边求微分得:43第四十三页,共八十三页,编辑于2023年,星期日
总结一、直接测量量不确定度评定步骤1、修正可定系统误差多次测量估算步骤
对等精度测量列运算如下2、计算44第四十四页,共八十三页,编辑于2023年,星期日4、按肖维勒准则剔除异常值后,重复步骤2、3,直到无异常值。5、计算3、计算6、计算45第四十五页,共八十三页,编辑于2023年,星期日8、最终结果:{7、计算总不确定度(单位)46第四十六页,共八十三页,编辑于2023年,星期日二、间接测量结果不确定度评定步骤1、计算2、计算3、计算4、最后结果{47第四十七页,共八十三页,编辑于2023年,星期日直接测量量数据处理举例某长度测6次,分别为29.1829.1929.2729.2529.2629.24(cm)仪=0.05cmcm2、计算解:1、无可定系统误差3、计算48第四十八页,共八十三页,编辑于2023年,星期日挑选最大最小值比较4、剔除异常值所以无异常值5、计算49第四十九页,共八十三页,编辑于2023年,星期日不确定度有效数字保留1位,且与平均值的最后一位对齐.8、最后结果:6、计算:7、计算:50第五十页,共八十三页,编辑于2023年,星期日间接测量量数据处理举例测得某园柱体质量M,直径D,高度H值如下,计算其密度及不确定度。51第五十一页,共八十三页,编辑于2023年,星期日代入数据计算密度52第五十二页,共八十三页,编辑于2023年,星期日相对不确定度53第五十三页,共八十三页,编辑于2023年,星期日总不确定度测量结果54第五十四页,共八十三页,编辑于2023年,星期日§5.有效数字及运算规则数据左起第一位非零数起,到第一位欠准数止的全部数字。有效数字=准确数字+欠准数位一、有效数字的一般概念55第五十五页,共八十三页,编辑于2023年,星期日
有效数字来源于测量时所用的仪器。我们的任务是使测量值尽可能准确地反映出它的真实值。有两个特征:(2)在最小刻度之间可估计一位。欠准位准确位(1)以刻度为依据可读到最小刻度所在位。56第五十六页,共八十三页,编辑于2023年,星期日
3536(cm)[1]位置为35.00cm,不能写成35cm。[1][2]位置为35.40cm[2][3][3]位置介于35.7--35.8之间,可以估计为35.75.35.7635.77,不妨取35.76cm。
估计值只有一位,所以也叫欠准数位或可疑数位。57第五十七页,共八十三页,编辑于2023年,星期日有效数字的特点(1)位数与单位变换或小数点位置无关。35.76cm=0.3576m=0.0003576km(2)0的地位0.00035763.0053.000都是四位(3)特大或特小数用科学计数法58第五十八页,共八十三页,编辑于2023年,星期日二、有效数字的读取
进行直接测量时,由于仪器多种多样,正确读取有效数字的方法大致归纳如下:1、一般读数应读到最小分度以下再估一位。例如,1/2,1/5,1/4,1/10等。2、有时读数的估计位,就取在最小分度位。例如,仪器的最小分度值为0.5,则0.1-0.4,0.6-0.9都是估计的,不必估到下一位。59第五十九页,共八十三页,编辑于2023年,星期日3、游标类量具,读到卡尺分度值。多不估读,特殊情况估读到游标分度值的一半。5、特殊情况,直读数据的有效数字由仪器的灵敏阈决定。例如在“灵敏电流计研究”中,测临界电阻时,调节电阻箱“
”,仪器才刚有反应,尽管最小步进为0.1电阻值只记录到“
”。4、数字式仪表及步进读数仪器不需估读。6、若测值恰为整数,必须补零,直补到可疑位。60第六十页,共八十三页,编辑于2023年,星期日三.有效数字的运算规则准准准欠欠欠[1]加减:与位数最高者对齐。[2]乘除:一般可与位数最少者相同。[3]幂运算、对数(指数)、三角函数(反三角)不改变有效数字位数。61第六十一页,共八十三页,编辑于2023年,星期日加、减法约简可见,约简不影响计算结果。在加减法运算中,各量可约简到其中位数最高者的下一位,其结果的欠准数位与参与运算各量中位数最高者对齐。62第六十二页,共八十三页,编辑于2023年,星期日乘、除法在乘除运算之前,各量可先约简到比其中位数最少者多一位。运算结果一般与位数最少者相同,特殊情况比最少者多(少)一位。多一位的情况全部欠准时,商所在位即为为欠准数位。比位数最少者少一位的情况。63第六十三页,共八十三页,编辑于2023年,星期日有效数字位数与底数的相同乘方、立方、开方64第六十四页,共八十三页,编辑于2023年,星期日初等函数运算四位有效数字,经正弦运算后得几位?问题是在位上有波动,比如为,对正弦值影响到哪一位,哪一位就应是欠准数所在位。根据微分在近似计算中的应用,可知:第四位为欠准数位。65第六十五页,共八十三页,编辑于2023年,星期日不参与有效数字运算常数66第六十六页,共八十三页,编辑于2023年,星期日1.不确定度的有效数字
一般情况下不确定度的有效数字取一位,精密测量情况下,可取二位。2.测量结果的有效数字
测量结果最佳值的有效数字的末位与不确定度首位取齐。3.舍入规则:四舍六入五凑偶四、舍入法则67第六十七页,共八十三页,编辑于2023年,星期日当实验结果的有效数字位数较多时,进行取舍一般采用1/2修约规则。(1)需舍去部分的总数值大于0.5时,所留末位需加1,即进。(2)需舍去部分的总数值小于0.5时,末位不变,即舍。(3)需舍去部分的总数值等于0.5时,所留部分末位应凑成偶数。即末位为偶数(0、2、4、6、8),数字舍去;末位为奇数(1、3、5、7、9),数字入进变为偶数。修约成4位有效数字3.14159→3.1426.378501→6.3792.71729→2.7174.51050→4.5105.6235→5.6243.21650→3.216四舍、六入、五凑偶68第六十八页,共八十三页,编辑于2023年,星期日一、列表法表1.不同温度下的金属电阻值n1234567t(C)10.526.038.351.062.875.585.7R()10.42310.89211.20111.58612.02512.34412.670物理量的名称(符号)和单位有效数字正确§6实验数据处理基本方法69第六十九页,共八十三页,编辑于2023年,星期日注意:[1]根据数据的分布范围,合理选择单位长度及坐标轴始末端的数值,并以有效数字的形式标出。[2]将实验点的位置用符号X或等标在图上,用铅笔连成光滑曲线或一条直线,并标出曲线的名称。二作图及图解法70第七十页,共八十三页,编辑于2023年,星期日[3]线性关系数据求直线的斜率时,应在直线上选相距较远的两新点A.B标明位置及坐标A(X1Y1),B(X2Y2)由此求得斜率。
作图法特点:
简单明了。缺点:有一定任意性(人为因素),故不能求不确定度。非线性关系数据可进行曲线改直后再处理71第七十一页,共八十三页,编辑于2023年,星期日因变量自变量标度起点终点72第七十二页,共八十三页,编辑于2023年,星期日(4)描点+++++++(5)连线(6)注解说明73第七十三页,共八十三页,编辑于2023年,星期日(7)求斜率B(83.5,12.600)+++++++电阻R随温度t变化曲线A(13.0,10.500)74第七十四页,共八十三页,编辑于2023年,星期日当X等间隔变化,且X的误差可以不计的条件下,将其分成两组,进行逐差可求得:对于X:X1XnX2nY:Y1YnY2n
三、逐差法75第七十五页,共八十三页,编辑于2023年,星期日砝码质量(Kg)1.0002.0003.0004.0005.0006.0007.0008.000弹簧伸长位置(cm)x1x2x3x4x5x6x7x876第七十六页,共八十三页,编辑于2023年,星期日
是从统计的角度处理数据,并能得到测量结果不确定度的一种方法。满足线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 押金合同范本应用指南
- 通信槽探施工合同
- 电力设施建设招投标诚信承诺书
- 产业园环境卫生管理协议
- 环保工程设备安全评估工程队合同
- 环保工程建设项目合同样本
- 市场代理权转让合同
- 垃圾处理灰工施工合同
- 商务租车服务合同
- 建筑装饰电焊工程协议
- 2024至2030年中国方形保鲜盒数据监测研究报告
- 江苏省徐州市铜山区2023-2024学年九年级上学期期中英语试卷(含答案解析)
- 大数据处理服务合同
- 天津市河西区2023-2024学年九年级上学期期中英语试题
- 8.3 法治社会 课件高中政治统编版必修三政治与法治
- 河北省唐山市滦南县2024-2025学年七年级上学期10月期中数学试题
- 第八课 法治中国建设 课件高考政治一轮复习统编版必修三政治与法治
- GB/T 44653-2024六氟化硫(SF6)气体的现场循环再利用导则
- GB/T 44540-2024精细陶瓷陶瓷管材或环材弹性模量和弯曲强度的测定缺口环法
- 道路交通安全法律法规
- 2024年新北师大版数学一年级上册 第4单元 10以内数加与减 第9课时 可爱的企鹅 教学课件
评论
0/150
提交评论