版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页共页有关八年级数学教案范文汇编7篇有关八年级数学教案范文汇编7篇八年级数学教案篇1学习目的1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。2、由坐标的变化探究新旧图形之间的变化。重点1、作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。2、根据轴对称图形的特点,轴一边的图形或坐标确定另一边的图形或坐标。难点体会极坐标和直角坐标思想,并能解决一些简单的问题学习过程(导入、探究新知、即时练习、小结、达标检测、作业)第一课时学习过程:一、旧知回忆:1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。2、坐标平面内点的坐标的表示方法____________。3、各象限点的坐标的特征:二、新知检索:1、在方格纸上描出以下各点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形三、典例分析^p例1、(1)将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析^p所得图形与原来图形相比有什么变化?假如纵坐标保持不变,横坐标分别减2呢?(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析^p所得图形与原来图形相比有什么变化?假如横坐标保持不变,纵坐标减2呢?例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析^p所得图形与原来图形相比有什么变化?(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析^p所得图形与原来图形相比有什么变化?四、题组训练1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?(2)纵、横分别加3呢?(3)纵、横分别变成原来的2倍呢?归纳:图形坐标变化规律1、平移规律:2、图形伸长与压缩:第二课时一、旧知回忆:1、轴对称图形定义:假如一个图形沿着对折后两局部完全重合,这样的图形叫做轴对称图形。中心对称图形定义:在同一平面内,假如把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形二、新知检索:1、如图,左边的鱼与右边的鱼关于y轴对称。1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?2、各个对应顶点的坐标有怎样的关系?3、假如将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?三、典例分析^p,如下图,1、右图的鱼是通过什么样的变换得到左图的鱼的。2、假如将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。3、假如将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系四、题组练习1、将坐标作如下变化时,图形将怎样变化?①(x,y)(x,y+4)②(x,y)(x,y-2)③(x,y)(1/2x,y)④(x,y)(3x,y)⑤(x,y)(x,1/2y)⑥(x,y)(3x,3y)2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。3、如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。4、描出以下图中枫叶图案关于x轴的轴对称图形的简图。学习笔记八年级数学教案篇2教学建议1、平行线等分线段定理定理:假如一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。考前须知:定理中的平行线组是指每相邻的两条间隔都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。2、平行线等分线段定理的推论推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。记忆方法:“中点”+“平行”得“中点”。推论的用处:〔1〕平分线段;〔2〕证明线段的倍分。重难点分析^p本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的根底,而且是第五章中“平行线分线段成比例定理”的根底。本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新颖有趣但掌握不深的情况发生,老师在教学中要加以注意。教法建议平行线等分线段定理的引入生活中有许多平行线等分线段定理的例子,并不生疏,平行线等分线段定理的引入可从下面几个角度考虑:①从生活实例引入,如刻度尺、作业本、栅栏、等等;②可用问题式引入,开场时设计一系列与平行线等分线段定理概念相关的问题由学生进展考虑、研究,然后给出平行线等分线段定理和推论。教学设计例如一、教学目的1、使学生掌握平行线等分线段定理及推论。2、可以利用平行线等分线段定理任意等分一条线段,进一步培养学生的作图才能。3、通过定理的变式图形,进一步进步学生分析^p问题和解决问题的才能。4、通过本节学习,体会图形语言和符号语言的和谐美二、教法设计学生观察发现、讨论研究,老师引导分析^p三、重点、难点1、教学重点:平行线等分线段定理2、教学难点:平行线等分线段定理四、课时安排l课时五、教具学具计算机、投影仪、胶片、常用画图工具六、师生互动活动设计老师复习引入,学生画图探究;师生共同归纳结论;老师示范作图,学生板演练习七、教学步骤【复习提问】1、什么叫平行线?平行线有什么性质。2、什么叫平行四边形?平行四边形有什么性质?【引入新课】由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?〔横线是互相平等的,并且它们之间的间隔是相等的〕,然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?〔相等,为什么?〕这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?〔引导学生把做实验的条件和得到的结论写成一个命题,老师总结,由此得到平行线等分线段定理〕平行线等分线段定理:假如一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的间隔都相等的特殊平行线组,这一点必须使学生明确。下面我们以三条平行线为例来证明这个定理〔由学生口述,求证〕。:如图,直线,。求证:。分析^p1:如图把相等的线段平移,与要求证的两条线段组成三角形〔也可应用平行线间的平行线段相等得〕,通过全等三角形性质,即可得到要证的结论。〔引导学生找出另一种证法〕分析^p2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得。证明:过点作分别交、于点、,得和,如图。∴∵,∴又∵,,∴∴为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图〔用计算机动态演示〕。引导学生观察以下图,在梯形中,,,那么可得到,由此得出推论1。推论1:经过梯形一腰的中点与底平行的`直线,必平分另一腰。再引导学生观察以下图,在中,,,那么可得到,由此得出推论2。推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。接下来讲如何利用平行线等分线段定理来任意等分一条线段。例:如图,线段。求作:线段的五等分点。作法:①作射线。②在射线上以任意长顺次截取。③连结。④过点。、、分别作的平行线、、、,分别交于点、、、。、、、就是所求的五等分点。〔说明略,由学生口述即可〕【总结、扩展】小结:〔l〕平行线等分线段定理及推论。〔2〕定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。〔3〕定理中的“平行线组”,是指每相邻两条平行线间的间隔都相等的特殊平行线组。〔4〕应用定理任意等分一条线段。八、布置作业教材P188中A组2、9九、板书设计十、随堂练习教材P182中1、2八年级数学教案篇3课题:一元二次方程实数根错例剖析课【教学目的】精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深入性。【课前练习】1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当a_____时,方程为一元二次方程。2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。【典型例题】例1以下方程中两实数根之和为2的方程是〔〕(A)x2+2x+3=0(B)x2-2x+3=0(c)x2-2x-3=0(D)x2+2x+3=0错答:B正解:C错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C适宜。例2假设关于x的方程x2+2(k+2)x+k2=0两个实数根之和大于-4,那么k的取值范围是〔〕(A)k>-1(B)k<0(c)-1<k<0(D)-1≤k<0错解:B正解:D错因剖析:漏掉了方程有实数根的前提是△≥0例3〔20xx广西中考题〕关于x的一元二次方程(1-2k)x2-2x-1=0有两个不相等的实根,求k的取值范围。错解:由△=(-2)2-4(1-2k)(-1)=-4k+8>0得k<2又∵k+1≥0∴k≥-1。即k的取值范围是-1≤k<2错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k=时,原方程变为一次方程,不可能有两个实根。正解:-1≤k<2且k≠例4〔20xx山东太原中考题〕x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。错解:由根与系数的关系得x1+x2=-〔2m+1〕,x1x2=m2+1,∵x12+x22=(x1+x2)2-2x1x2=[-〔2m+1〕]2-2〔m2+1〕=2m2+4m-1又∵x12+x22=15∴2m2+4m-1=15∴m1=-4m2=2错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m=-4时,方程为x2-7x+17=0,此时△=〔-7〕2-4×17×1=-19<0,方程无实数根,不符合题意。正解:m=2例5假设关于x的方程(m2-1)x2-2(m+2)x+1=0有实数根,求m的取值范围。错解:△=[-2(m+2)]2-4(m2-1)=16m+20∵△≥0∴16m+20≥0,∴m≥-5/4又∵m2-1≠0,∴m≠±1∴m的取值范围是m≠±1且m≥-错因剖析:此题只说(m2-1)x2-2(m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。正解:m的取值范围是m≥-例6二次方程x2+3x+a=0有整数根,a是非负数,求方程的整数根。错解:∵方程有整数根,∴△=9-4a>0,那么a<2.25又∵a是非负数,∴a=1或a=2令a=1,那么x=-3±,舍去;令a=2,那么x1=-1、x2=-2∴方程的整数根是x1=-1,x2=-2错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一局部,当a=0时,还可以求出方程的另两个整数根,x3=0,x4=-3正解:方程的整数根是x1=-1,x2=-2,x3=0,x4=-3【练习】练习1、〔01济南中考题〕关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。〔1〕求k的取值范围;〔2〕是否存在实数k,使方程的两实数根互为相反数?假如存在,求出k的值;假如不存在,请说明理由。解:〔1〕根据题意,得△=(2k-1)2-4k2>0解得k<∴当k<时,方程有两个不相等的实数根。〔2〕存在。假如方程的两实数根x1、x2互为相反数,那么x1+x2=-=0,得k=。经检验k=是方程-的解。∴当k=时,方程的两实数根x1、x2互为相反数。读了上面的解题过程,请判断是否有错误?假如有,请指出错误之处,并直接写出正确答案。解:上面解法错在如下两个方面:〔1〕漏掉k≠0,正确答案为:当k<时且k≠0时,方程有两个不相等的实数根。〔2〕k=。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数练习2〔02广州市〕当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根?解:〔1〕当a=0时,方程为4x-1=0,∴x=〔2〕当a≠0时,∵△=16+4a≥0∴a≥-4∴当a≥-4且a≠0时,方程有实数根。又因为方程只有正实数根,设为x1,x2,那么:x1+x2=->0;x1.x2=->0解得:a<0综上所述,当a=0、a≥-4、a<0时,即当-4≤a≤0时,原方程只有正实数根。【小结】以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而无视了实数根的存在与“△”之间的关系。1、运用根的判别式时,假设二次项系数为字母,要注意字母不为零的条件。2、运用根与系数关系时,△≥0是前提条件。3、条件多面时〔如例5、例6〕考虑要周全。【布置作业】1、当m为何值时,关于x的方程x2+2〔m-1〕x+m2-9=0有两个正根?2、,关于x的方程mx2-2〔m+2〕x+m+5=0〔m≠0〕没有实数根。求证:关于x的方程〔m-5〕x2-2〔m+2〕x+m=0一定有一个或两个实数根。考题汇编1、〔20xx年广东省中考题〕设x1、x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求〔x1-x2〕2的值。2、〔20xx年广东省中考题〕关于x的方程x2-2x+m-1=0〔1〕假设方程的一个根为1,求m的值。〔2〕m=5时,原方程是否有实数根,假如有,求出它的实数根;假如没有,请说明理由。3、〔20xx年广东省中考题〕关于x的方程x2+2〔m-2〕x+m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。4、〔20xx年广东省中考题〕x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。八年级数学教案篇411.1与三角形有关的线段11.1.1三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3.三角形在实际生活中的应用.(难点)一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.老师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完好的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有()A.2个B.3个C.4个D.5个解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).应选B.方法总结:数三角形的个数,可以按照数线段条数的方法,假如一条线段上有n个点,那么就有n〔n-1〕2条线段,也可以与线段外的一点组成n〔n-1〕2个三角形.探究点二:三角形的三边关系【类型一】断定三条线段能否组成三角形以以下各组线段为边,能组成三角形的是()A.2c,3c,5cB.5c,6c,10cC.1c,1c,3cD.3c,4c,9c解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.应选B.方法总结:断定三条线段能否组成三角形,只要断定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是()A.3<x<11B.4<x<7C.-3<x<11D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.应选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进展解决.【类型三】等腰三角形的三边关系一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来断定绝对值里的式子的正负,然后去绝对值符号进展计算即可.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进展化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进展化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既进步了学生学习的兴趣,又增强了学生的动手才能.八年级数学教案篇5一、教学目的1.灵敏应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与断定定理之间关系的认识.二、重点、难点1.重点:灵敏应用勾股定理及逆定理解决实际问题.2.难点:灵敏应用勾股定理及逆定理解决实际问题.3.难点的打破方法:三、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.四、例习题分析^p例1〔P83例2〕分析^p:⑴理解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;⑸∠PRS=∠QPR—∠QPS=45°.小结:让学生养成“三边求角,利用勾股定理的逆定理”的意识.例2〔补充〕一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比拟短边长7米,比拟长边短1米,请你试判断这个三角形的形状.分析^p:⑴假设判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.解略.此题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.八年级数学教案篇6一、教学目的1.理解一个数平方根和算术平方根的意义;2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;3.通过本节的训练,进步学生的逻辑思维才能;4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探究数学奥秘的兴趣。二、教学重点和难点教学重点:平方根和算术平方根的概念及求法。教学难点:平方根与算术平方根联络与区别。三、教学方法讲练结合四、教学手段幻灯片五、教学过程〔一〕提问1、一正方形面积为50平方米,那么它的边长应为多少?2、一个数的平方等于1000,那么这个数是多少?3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空1、〔〕2=9;2、〔〕2=0、25;3、5、〔〕2=0、0081学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。由练习引出平方根的概念。〔二〕平方根概念假如一个数的平方等于a,那么这个数就叫做a的平方根〔二次方根〕。用数学语言表达即为:假设x2=a,那么x叫做a的平方根。由练习知:±3是9的平方根;±0.5是0。25的平方根;0的平方根是0;±0.09是0。0081的平方根。由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:〔〕2=—4学生考虑后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质〔可由学生总结,老师整理〕。〔三〕平方根性质1.一个正数有两个平方根,它们互为相反数。2.0有一个平方根,它是0本身。3.负数没有平方根。〔四〕开平方求一个数a的平方根的运算,叫做开平方的运算。由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法那么不同之处在于只能对非负数进展运算,而且正数的运算结果是两个。〔五〕平方根的表示方法一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“—”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”。练习:1.用正确的符号表示以下各数的平方根:①26②247③0。2④3⑤解:①26的平方根是②247的平方根是③0。2的平方根是④3的平方根是⑤的平方根是由学生说出上式的读法。例1。以下各数的平方根:〔1〕81;〔2〕;〔3〕;〔4〕0。49解:〔1〕∵〔±9〕2=81,∴81的平方根为±9。即:〔2〕的平方根是,即〔3〕的平方根是,即〔4〕∵〔±0。7〕2=0。49,∴0。49的平方根为±0。7。小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。六、总结本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,稳固所学知识。七、作业教材P。127练习1、2、3、4。八、板书设计平方根〔一〕概念〔四〕表示方法例1〔二〕性质〔三〕开平方探究活动求平方根近似值的一种方法求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。例1。求的值。解∵92102,两边平方并整理得∵x1为纯小数。18x1≈16,解得x1≈0。9,便可依次得到准确度为0。01,0。001,……的近似值,如:两边平方,舍去x2得19.8x2≈—1.01八年级数学教案篇7教学目的:1.掌握三角形内角和定理及其推论;2.弄清三角形按角的分类,会按角的大小对三角形进展分类;3.通过对三角形分类的学习,使学生理解数学分类的根本思想,并会用方程思想去解决一些图形中求角的问题。4.通过三角形内角和定理的证明,进步学生的逻辑思维才能,同时培养学生严谨的科学态5.通过对定理及推论的分析^p与讨论,开展学生的求同和求异的思维才能,培养学生联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 策划宣传设备合同
- 餐厅盒饭合同模板
- 材料供应运输合同范本
- 病人外出安全协议书
- 北京市人事局入职合同
- 山西省2024八年级物理上册第三章物态变化中考聚焦课件新版新人教版
- 期末试题-2024-2025学年人教PEP版英语六年级上册 (含答案)
- 21 B光的衍射 光的偏振 激光 中档版2025新课改-高中物理-选修第1册(21讲)
- 浙江省宁波市余姚市子陵教育集团2024-2025学年八年级(上)期中数学试卷(含答案)
- 地矿地震仪器行业相关投资计划提议
- 大数据专业职业规划
- 任务驱动启发学生自学-任务驱动下的小学语文教学研究 论文
- 吸入麻醉联合神阻滞在骨科手术中应用
- 人教版九年级上学期期中考试数学试卷及答案解析(共5套)
- 逆境中的积极心态与成就
- 山东省2023年高考物理模拟(一模、二模)试题知识点训练:电磁学解答题
- 门诊健康宣教 课件
- 芯片质量管理策划方案
- 学生戏剧表演
- 人工智能基础及应用(微课版) 课件 第6章 人工神经网络
- 计量器具管理课件
评论
0/150
提交评论