




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MATLAB的QPSK系统仿真设计与实现目录1QPSK系统的应用背景简介32QPSK实验仿真的意义3验平台和实验内容31实验平台32实验内容3二、系统实现框图和分析4QPSK调制局部,4QPSK解调局部5三、实验结果及分析6理想信道下的仿真6高斯信道下的仿真7先通过瑞利衰落信道再通过高斯信道的仿真8总结:10附录12L1QPSK系统的应用背景简介QPSK是英文QuadraturePhaseShiftKeying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,缺乏之处是其频谱利用率低于线性调制技术。19世纪80年代中期以end;fori=1:length(SNRindB2)SNR=exp(SNRindB2(i)*log(10)/10);theo_err_prb(i)=Qfunct(sqrt(2*SNR));end;titleCQPSK误码率分析上semilogy(SNRindB1,smld_bit_err_prb;*');axis([01010e-81]);holdon;%semilogy(SNRindB1,smld_symbol_err_prb,,o,);semilogy(SNRindB2,theo_err_prb);legend(仿真比特误码率?理论比特误码率)holdoff;function[y]=Qfunct(x)y=(l/2)*erfc(x/sqrt(2));function[pb,ps]=cm_sm32(SNRindB)N=10000;E=l;SNR=10A(SNRindB/10);sgma=sqrt(E/SNR)/2;s00=[l0];s01=[01];sll=[-l0];sl0=[0-l];fori=l:Ndsourcel(i)=[l011000101101011];numofsymbolerror=0;numofbiterror=0;fori=l:Nn=sgma*randn(size(s00));if((dsource1(i)==0)&(dsource2(i)==0))r=s00+n;elseif((dsourcel(i)=0)&(dsource2(i)=l))r=s01+n;elseif((dsourcel(i)==1)&(dsource2(i)==0))r=sl0+n;elser=sll+n;end;c00=dot(r,s00);c01=dot(r,s01);clO=dot(r,slO);cll=dot(r,sl1);c_max=max([c00cOlclOcl1]);if(cOO==c_max)decisl=0;decis2=0;elseif(cO1==c_max)decisl=0;decis2=l;elseif(c1O==c_max)decisl=l;decis2=0;elsedecisl=l;decis2=l;end;symbolerror=0;if(decis1~=dsourcel(i))numofbiteiTor=numofbiterror+1;symbolerror=1;end;if(decis2〜二dsource2⑴)numofbiteiTor=numofbiten*or+1;symbolerror=1;end;if(symbolerror==1)numofsymbolerror=numofsymbolerror4-1;end;end;ps=numofsymbolerror/N;pb=numofbiten'oi7(2*N);效果图:后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。L2QPSK实验仿真的意义通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成局部,了解调制解调方式中最根基的方法。了解QPSK的实现方法及数学原理。并对“通信〃这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等根基知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的根基知识和编程的常用算法以及使用MATLAB仿真系统的本卷须知,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进展测试和比照。足不出户便可以做实验。1.3实验平台和实验内容3.1实验平台本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB6.0或者以上版本即可。(本实验附带基于MatlabSimulink(模块化)仿真,如需使用必须安装simulink模块)2实验内容1,构建一个理想信道基本QPSK仿真系统,要求仿真结果有a.基带输入波形及其功率谱QPSK信号及其功率谱QPSK信号星座图2,构建一个在AWGN(高斯白噪声)信道条件下的QPSK仿真系统,要求仿真结果有QPSK信号及其功率谱QPSK信号星座图c.高斯白噪声信道条件下的误码性能以及高斯白噪声的理论曲线,要求所有误码性能曲线在同一坐标比例下绘制3验可选做扩展内容要求:构建一个先经过Rayleigh〔瑞利衰落信道),再通过AWGN(高斯白噪声)信道条件下的条件下的QPSK仿真系统,要求仿真结果有a.QPSK信号及其功率谱b.通过瑞利衰落信道之前和之后的信号星座图,前后进展对比c.在瑞利衰落信道和在高斯白噪声条件下的误码性能曲线,并和二.2.c中所要求的误码性能曲线在同一坐标比例下绘制二、系统实现框图和分析QPSK调制局部,原理框图如图1所示图1原理分析:基本原理及系统构造QPSK与二进制PSK一样,传输信号包含的信息都存在于相位中。的别的载波相位取四个等间隔值之一,如Ji/4,3月/4,5月/4,和7;1/4。相应的,可将发射信号定义为"2万〃cos[2/rfe+(2i—1)%/4]OWtWTSi⑴ —“.Oo, 其他其中,i=l,2,2,4;E为发射信号的每个符号的能量,T为符号持续时间,载波频率f等于nc/T,nc为固定整数。每一个可能的相位值对应于一个特定的二位组。例如,可用前述的一组相位值来表示格雷码的一组二位组:10,00,01,Ho下面介绍QPSK信号的产生和检测。如果a为典型的QPSK发射机框图。输入的二进制数据序列首先被不归零(NRZ)电平编码转换器转换为极性形式,即负号1和0分别用后和一J五表示。接着,该二进制波形被分接器分成两个分别
由输入序列的奇数位偶数位组成的彼此独立的二进制波形,这两个二进制波形分别用al⑴,和a2⑴表示。容易注意到,在任何一信号时间间隔内al〔t),和a2〔t〕的幅度恰好分别等于Sil和S12,即由发送的二位组决定。这两个二进制波形al[t),和a2[t)被用来调制一对正交载波或者说正交基本函数:[t)=94cos(2"启),。2(t)=四彳5布(2兀//)。这样就得到一对二进制PSK信号。(t〕和。2(t)的正交性使这两个信号可以被独立地检测。最后,将这两个二进制PSK信号相加,从而得期望的QPSK。QPSK解调局部,原理框图如图2所示:02〔t〕正交信道门限=0图2原理分析:QPSK接收机由一对共输入地相关器组成。这两个相关器分别提供本地产生地相干参考信号。1(t)和。2(th相关器接收信号x(th相关器输出地xl和x2被用来与门限值0进展对比。如果xl〉0,则判决同相信道地输出为符号1;如果xl<0,则判决同相信道的输出为符号0。;类似地。如果正交通道也是如此判决输出。最后同相信道和正交信道输出这两个二进制数据序列被复加器合并,重新得到原始的二进制序列。在AWGN信道中,判决结果具有最小的负号过失概率。三、实验结果及分析根据图1和图2的流程框图设计仿真程序,得出结果并且分析如下:3.1、理想信道下的仿真,实验结果如图3所示图3实验结果分析:如图上结果显示,完成了QPSK信号在理想信道上的调制,传输,解调的过程,由于调制过程中加进了载波,因此调制信号的功率谱密度会发生变化。并且可以看出调制解调的结果没有误码。高斯信道下的仿真,结果如图4所示:图4实验结果分析:由图4可以得到高斯信道下的调制信号,高斯噪声,调制输出功率谱密度曲线和QPSK信号的星座图。在高斯噪声的影响下,调制信号的波形发生了明显的变化,其功率谱密度函数相对于图1中的调制信号的功率谱密度只发生了微小的变化,原因在于高斯噪声是一个均值为。的白噪声,在各个频率上其功率是均匀的,因此此结果是真确的。星座图反映可接收信号早高斯噪声的影响下发生了误码,但是大局部还是保持了原来的特性。先通过瑞利衰落信道再通过高斯信道的仿真。实验结果如图5所示:图5实验结果分析:由图5可以得到瑞利衰落信道前后的星座图,调制信号的曲线图及其功率谱密度。最后显示的是高斯信道和瑞利衰落信道的误码率比照。由图可知瑞利衰落信道下的误码率比高斯信道下的误码率高。至此,仿真实验就全部完成。结论本文运用MATLAB中的动态仿真工具箱Simulink仿真实现了PCM系统的全部过程。根据PCM系统的组成原理,在Simulink模块库中找到相应的模块,然后选择适宜的模块以及设置适当的参数,建设了PCM通信系统的仿真模型,最后在给定仿真的条件下,运行了仿真系统。仿真结果说明:.在正常的信噪比条件下,该通信系统失真较小,到达了预期的目的。.Simulink仿真工具箱操作简单方便、调试直观,为通信系统的软件仿真实现提供了极大的方便。附录MATLAB程序%调相法clearallcloseallt=[-l:0.01:7-0.01];tt=length(t);xl=ones(1,800);fori=l:ttif(t(i)>=-l&t(i)<=l)|(t(i)>=5&t(i)<=7);xl(i)=l;elsexl(i)=-l;endendtl=[0:0.01:8-0.01];t2=0:0.01:7-0.01;t3=-l:0.01:7.1-0.01;t4=0:0.01:8.1-0.01;ttl=length(tl);x2=ones(1,800);fori=l:ttlif(tl(i)>=0&tl(i)<=2)|(tl(i)>=4&tl(i)<=8);x2⑴=1;elsex2(i)=-1;endendf=0:0.1:l;xrc=0.5+0.5*cos(pi*f);yl=conv(xl,xrc)/5.5;y2=conv(x2,xrc)/5.5;n0=randn(size(t2));fl=l;i=x1.*cos(2*pi*f1*t);q=x2.*sin(2*pi*f1*tl);I=i(101:800);Q=q(1:700);QPSK=sqrt(l/2).*I+sqrt(l/2).*Q;QPSK_n=(sqrt(1/2).*I+sqrt(1/2).*Q)+nO;nl=randn(size(t2));i_rc=y1.*cos(2*pi*fl*t3);q_rc=y2.*sin(2*pi*fl*t4);I_rc=i_rc(101:800);Q_rc=q_rc(1:700);QPSK_rc=(sqrt(l/2).*I_rc+sqrt(l/2).^Q_rc);QPSK_rc_n1=QPSK_rc+n1;figure(l)subplot(4,1,1);plot(t3,i_rc);axis([-18-1l]);ylabel('a序列');subplot(4,1,2);plot(t4,q_rc);axis([-18-11]);ylabel('b序列');subplot(4,1,3);plot(t2,QPSK_rc);axis([-18-1l]);ylabel('合成序列');subplot(4,1,4);plot(t2,QPSK_rc_n1);axis([-18-1l]);ylabel。参加噪声);效果图:%设定T=l,参加高斯噪声clearallcloseall%调制bit_in=randint(le3,1,[01]);bit」=bit_in(l:2:le3);bit_Q=bit_in(2:2:le3);dataI=-2*bit1+1;data_Q=-2*bit_Q+l;data_11=repmat(data_F,20,1);data_Q1=repmat(data_Q\20,1);fori=l:le4data_I2(i)=data_11(i);data_Q2(i)=data_Ql(i);end;f=0:0.1:l;xrc=0.5+0.5*cos(pi*f);data_I2_rc=conv(data_I2,xrc)/5.5;data_Q2_rc=conv(data_Q2,xrc)/5.5;fl=l;tl=0:0.1:le3+0.9;nO=rand(size(tl));I_rc=data_I2_rc.*cos(2*pi*f1*tl);Q_rc二data_Q2_rc.*sin(2*pi*fl*tl);QPSK_rc=(sqrt(l/2).*I_rc+sqrt(l/2).*Q_rc);QPSK_rc_nO=QPSK_rc+nO;%解调I_demo二QPSK_rc_nO.*cos(2*pi*fl*tl);Q_demo=QPSK_rc_nO.*sin(2*pi*fl*tl);%低通滤波I_recover=conv(I_demo,xrc);Q_recover=conv(Q_demo,xrc);I=I_recover(11:10010);Q=Q_recover(11:10010);t2=0:0.05:le3-0.05;t3=0:0.1:le3-0.1;%抽样判决data_recover=[];fori=1:20:10000data_recover=[data_recoverI(i:l:i+19)Q(i:l:i+19)];end;bit_recovei-[];fori=1:20:20000ifsum(data_recover(i:i+19))>0data_recover_a(i:i+19)=1;bit_recover=[bit_recover1];elsedata_recover_a(i:i+19)=-l;bit_recover=[bit_recover-1];endenderror=0;dd=-2*bit_in+l;ddd=[dd!];ddd1=repmat(ddd,20,1);fori=l:2e4ddd2(i)=dddl(i);endfori=l:le3ifbit_recover(i)-=ddd(i)error=error+l;endendp=error/1000;figure(1)subplot(2,1,1);plot(t2,ddd2);axis([0100-2原序列’);subplot(2,1,2);plot(t2,data_recover_a);axis([0100-2解调后序列);效果图:%设定T=l,不加噪声clearallcloseall%调制bit_in=randint(le3,1,[01]);bit_I=bit_in(l:2:le3);bit_Q=bit_in(2:2:1e3);dataI=-2*bit1+1;data_Q=-2*bit_Q+l;data_Il=repmat(data_P,20,1);data_Q1=r叩mat(data_Q',20,l);fori=l:le4data_I2(i)=data_Il(i);data_Q2(i)=data_Ql(i);end;t=0:0.1:le3-0.1;f=0:0.1:l;xrc=0.5+0.5*cos(pi*f);data_I2_rc=conv(data_I2,xrc)/5.5;data_Q2_rc=conv(data_Q2,xrc)/5.5;fl=l;tl=0:0.1:le3+0.9;I_rc=data_I2_rc.*cos(2*pi*f1*tl);Q_rc=data_
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江北防水检测施工方案
- 极限思维在高中数学教学中的应用
- 基于ANSYS的离心压缩机主要零件建模和受力分析
- 深度学习视域下数学课堂提问模式的实践探索
- 跨国公司国际税务筹划的法律框架设计
- DB风电项目贷款风险管理的案例研究
- DB22-T1036-2011 超薄石材硬泡聚氨酯复合板外墙外保温工程技术规程
- 心功能不全合并糖尿病大鼠模型建立及代谢组学研究
- MES 系统应用于水厂的管理实践
- 2025版高考地理二轮复习仿真模拟练三
- 三阶段DEA模型理论与操作步骤详解
- 高效能人士的七个习惯The7HabitsofHighlyEffectivePeople课件
- 小学体育与健康教育科学二年级下册第一章体育基本活动能力立定跳远教案 省一等奖
- 工程分包管理计划
- 民事诉讼法学整套ppt课件完整版教学教程最全电子讲义(最新)
- 2022义务教育小学科学课程标准(2022版)解读(面向核心素养的科学教育)
- 河北省自然科学基金资助项目申请书模板
- 四年级奥数-容斥问题
- 常用标准波导和法兰尺寸
- 损益平衡点的计算方法
- 小学二年级下册音乐-第4课聆听《吉祥三宝》3--人音版(简谱)(10张)ppt课件
评论
0/150
提交评论