版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题三
三角函数及解三角形第1讲三角函数的图象与性质
考情概述高考对三角函数的图象的考查有:利用“五点法”作出图象、图象变换、由三角函数的图象(部分)确定三角函数的解析式.三角函数的性质是高考的一个重点,它既有直接考查的客观题,也有综合考查的主观题,常通过三角变换将其转化为y=Asin(ωx+φ)的形式,再研究其性质(定义域、值域、单调性、奇偶性、周期性).考点一三角函数的概念、诱导公式及基本关系
典型例题
方法归纳应用三角函数的概念和诱导公式应注意以下两点(1)当角的终边所在的位置不是唯一确定的时候要注意分情况解决,机械地使用三角函数的定义就会出现错误.(2)应用诱导公式与同角关系开方运算时,一定要注意三角函数的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.跟踪集训
考点二三角函数的图象与解析式(高频考点)
典型例题
答案(1)D
(2)B
方法归纳解决三角函数图象问题的方法及注意事项(1)已知函数y=Asin(ωx+φ)(A>0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A;由函数的周期确定ω;常根据“五点法”中的五个点确定φ,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x而言的,如果x的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.跟踪集训
考点三三角函数的性质
典型例题
跟踪集训
第2讲三角恒等变换与解三角形考情概述三角恒等变换是高考的热点内容,主要考查利用各种三角函数进行求值与化简,其中降幂公式、辅助角公式是考查的重点,切化弦、角的变换是常考的三角变换思想,正弦定理、余弦定理以及解三角形问题是高考的常考内容,主要考查:(1)边和角的计算;(2)三角形形状的判断;(3)面积的计算;(4)有关的范围等问题.由于此内容应用性较强,与实际问题结合起来命题将是今后高考的一个关注点.考点一三角恒等变换及求值
典型例题
答案(1)D
(2)C
(3)A
方法归纳三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan45°等;(2)项的分拆与角的配凑:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次;(4)弦、切互化:一般是切化弦.跟踪集训
考点二解三角形(高频考点)
典型例题
方法归纳解三角形的一般方法(1)已知两角和一边,如已知A、B和c,由A+B+C=π求C,由正弦定理求a、b.(2)已知两边和这两边的夹角,如已知a、b和C,应先用余弦定理求c,再应用正弦定理先求较短边所对的角,然后利用A+B+C=π求另一角.(3)已知两边和其中一边的对角,如已知a,b和A,应先用正弦定理求B,由A+B+C=π求C,再由正弦定理或余弦定理求c,要注意解可能有多种情况.(4)已知三边a、b、c,可应用余弦定理求A、B、C.跟踪集训
考点三正、余弦定理的实际应用解三角形应用题的常考类型(1)实际问题经抽象概括后,已知量与求知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.典型例题
(2016河南六市第一次联考)如图,在一条海防警戒线上的点A,B,C处各有一个水声检测点,B,C到A的距离分别为20千米和50千米,某时刻B收到来自静止目标P的一个声波信号,8秒后A,C同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A到P的距离为x千米,用x表示B,C到P的距离,并求出x的值;(2)求P到海防警戒线AC的距离.
方法归纳解三角形中的实际问题的四个步骤(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.1.如图,一辆汽车在一条水平的公路上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度正式贷款协议模板
- 房产无偿转移2024协议范本
- 2024年个人房产抵押借款协议模板
- 关于秋天的美文800字左右
- 齐鲁工业大学《宝石合成与优化》2023-2024学年第一学期期末试卷
- 2024年汽车配件电机交易协议模板
- 像…一样生活800字
- 护理病历书写品管圈
- 水利工程对水资源管理的推动考核试卷
- 各类灾害事故处置基本措施及程序考核试卷
- 2024.11.9全国消防安全日全民消防生命至上消防科普课件
- 安徽省淮北市地方婚礼流程资料
- 附件3-4欧曼金融服务经销商融资业务介绍
- 中医骨伤科学9肩周炎上肢伤筋
- 五年级分数乘法口算练习
- 客户服务管理七大原则
- 斜井常闭式防跑车装置设计说明书
- 购买文件登记表.doc
- [山东]建筑工程施工技术资料管理规程表格
- 《葫芦丝演奏的入门练习》教学设计
- 噪声伤害事故PPT课件
评论
0/150
提交评论