全等三角形的判定SAS_第1页
全等三角形的判定SAS_第2页
全等三角形的判定SAS_第3页
全等三角形的判定SAS_第4页
全等三角形的判定SAS_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十二章全等三角形三角形全等的判定(2)

——边角边通河县第三中学李丹丹

三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。ABCDEF在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD用符号语言表达为:

三角形全等判定方法1知识回顾:除了SSS外,还有其他情况吗?继续探索三角形全等的条件.思考(2)三条边(1)三个角(3)两边一角(4)两角一边当两个三角形满足六个条件中的三个时,有四种情况:SSS不能!?继续探讨三角形全等的条件:两边一角思考:已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?ABCABC图一图二符合图一的条件,它可称为“两边夹角”。符合图二的条件,通常说成“两边和其中一边的对角”

先任意画出一个ABC,再画一个A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A,把画好的A′B′C′,放到ABC上,它们能全等吗?一、探究:两边及其夹角结论:两边及夹角对应相等的两个三角形全等?思考:①

△A′B′C′与△ABC

全等吗?画法:1.画∠DA′E=∠A;2.在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;3.连接B′C′.ACBA′EC′D

②这两个三角形全等是满足哪三个条件?B′三角形全等判定方法2用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(SAS)两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)FEDCBAAC=DF∠C=∠FBC=EFA45°

二、探索边边角BDC10cm

8cm

8cm

两边及其中一边的对角对应相等的两个三角形全等吗?已知:AC=10cm,BC=8cm,∠A=45°.△ABC的形状与大小是唯一确定的吗?知识梳理:ABDABCSSA不能判定全等两边及一角对应相等的两个三角形全等吗?①两边及夹角对应相等的两个三角形全等(SAS);②两边及其中一边的的对角对应相等的两个三角形不一定全等.③现在你知道哪些三角形全等的判定方法?SSS,

SASSSA不成立如图,有一池塘,要测池塘两端A、B的距离,可在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA,连结BC并延长至E使CE=CB,连结ED,那么量出DE的长,就是A、B的距离,为什么?BADEC证明:在△ABC和△DEC中,AC=DC(已知)∠ACB=∠DCE(对顶角相等)BC=EC(已知)∴△ABC≌△DEC(SAS)∴AB=DE(全等三角形的对应边相等)分析:已知两边(相等)

找第三边(SSS)找夹角(SAS)解决问题两直线平行,内错角相等FABDCE练习:点E、F在AC上,AD//BC,AD=CB,AE=CF

求证(1)△AFD≌△CEB

分析:证三角形全等的三个条件∠A=∠C边角边AD//BCAD=CBAE=CFAF=CE?(已知)证明:∵AD//BC∴∠A=∠C又∵AE=CF在△AFD和△CEB中,AD=CB∠A=∠CAF=CE

∴△AFD≌△CEB(SAS)∴AE+EF=CF+EF即AF=CE摆齐根据写出结论指范围准备条件(已知)(已证)(已证)FABDCE(两直线平行,内错角相等)概念运用:1.在下列推理中填写需要补充的条件,使结论成立:如图,在△AOB和△DOC中,AO=DO(已知)___=___()BO=CO(已知)∴△ABC≌△DEF()SAS对顶角相等∠AOB∠DOC2.在下列推理中填写需要补充的条件,使结论成立:如图,在△AEC和△ADB中,____=____(已知)∠A=∠A(公共角)____=____(已知)∴△AEC≌△ADB()AEADACABSAS如图,已知:AB=AC,则添加什么条件可得△ABD≌△ACD?请说明理由.ABDC

3、拓展(1)补充∠BAD=∠CADAB=AC(已知)∠BAD=∠CAD(已知)AD=AD(公共边)∴△ABD≌△ACD(SAS)(2)补充BD=CDAB=AC(已知)AD=AD(公共边)∴△ABD≌△ACD(SSS)BD=CD(已知)1、今天我们学习哪种方法判定两三角形全等?边角边(SAS)

2、通过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论