版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十三章轴对称八年级上册13.3.1等腰三角形(第1课时)梓州中学龚洪元当前第1页\共有17页\编于星期三\12点如图,把一张长方形的纸按图中虚线对折,并剪去绿色部分,再把它展开,得到的△ABC有什么特点?ABCAB=AC等腰三角形活动(一):动手操作当前第2页\共有17页\编于星期三\12点ABC等腰三角形:有两条边相等的三角形,
叫做等腰三角形.等腰三角形的概念相等的两条边叫做腰,另一条边叫做底边,底边与腰的夹角叫做底角.两腰所夹的角叫做顶角,腰腰底边顶角底角回顾当前第3页\共有17页\编于星期三\12点上面剪出的等腰三角形是轴对称图形吗?ABCD把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,填入下表:重合的线段重合的角
等腰三角形除了两腰相等以外,你还能发现它的其他性质吗?AB=ACBD=CDAD=AD∠B=∠C∠ADB=∠ADC∠BAD=∠CAD活动(二):细心观察大胆猜想当前第4页\共有17页\编于星期三\12点ABCD设问:你发现了什么现象,猜一猜猜想等腰△ABC有哪些性质?
角:①∠B=∠C②∠BAD=∠CDA③∠ADC=∠ADB=900边:④BD=CD
→两个底角相等→AD为顶角∠BAC的平分线→AD为底边BC上的高→AD为底边BC上的中线结论:等腰三角形是轴对称图形;当前第5页\共有17页\编于星期三\12点等腰三角形性质:性质1等腰三角形的两个底角相等。(简写成“等边对等角”);性质2等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(可简记为“三线合一”)性质3等腰三角形是轴对称图形,其顶角的平分线(底边上的中线、底边上的高)所在的直线就是等腰三角形的对称轴。当前第6页\共有17页\编于星期三\12点性质1(等边对等角)等腰三角形的两个底角相等。ABCD已知:△ABC中,AB=AC求证:∠B=C想一想:1.如何证明两个角相等?议一议:2.如何构造两个全等的三角形?活动(三):小组讨论当前第7页\共有17页\编于星期三\12点已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABC等腰三角形的两个底角相等。D证明:作底边的中线AD,则BD=CDAB=AC(已知)BD=CD(已作)AD=AD(公共边)∴△BAD≌△CAD(SSS).∴∠B=∠C(全等三角形的对应角相等).在△BAD和△CAD中方法一:作底边上的中线当前第8页\共有17页\编于星期三\12点已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABC等腰三角形的两个底角相等。D证明:作顶角的平分线AD,则∠1=∠2AB=AC(已知)∠1=∠2(已作)AD=AD(公共边)∴△BAD≌△CAD(SAS).∴∠B=∠C(全等三角形的对应角相等).方法二:作顶角的平分线在△BAD和△CAD中12当前第9页\共有17页\编于星期三\12点已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABC等腰三角形的两个底角相等。D证明:作底边的高线AD,则∠BDA=∠CDA=90°AB=AC(已知)AD=AD(公共边)∴Rt△BAD≌Rt△CAD(HL).∴∠B=∠C(全等三角形的对应角相等).方法三:作底边的高线在Rt△BAD和Rt△CAD中当前第10页\共有17页\编于星期三\12点(等腰三角形三线合一)ABCD性质2
等腰三角形的顶角平分线与底边上的中线,底边上的高互相重合(如何证明)活动(四):小组讨论当前第11页\共有17页\编于星期三\12点
1.根据等腰三角形性质2填空,在△ABC中,AB=AC,小试牛刀(1)∵AD⊥BC,∴∠_____=∠_____,____=____.(2)∵AD是中线,∴____⊥____,∠_____=∠_____.(3)∵AD是角平分线,∴____⊥____,_____=_____.ABCDBADCADCADBDCDADBCBDBADBCADCD
知一线得二线
“三线合一”可以帮助我们解决线段的垂直、相等以及角的相等问题。当前第12页\共有17页\编于星期三\12点1、等腰三角形一个底角为70°,它的顶角为______.小试牛刀2、等腰三角形一个角为70°,它的另外两个角为__________________.3、等腰三角形一个角为110°,它的另外两个角为___________.①顶角度数+2×底角度数=180°②0°<顶角度数<180°③0°<底角度数<90°结论:
在等腰三角形中,40°35°,35°70°,40°
或55°,55°当前第13页\共有17页\编于星期三\12点例1、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。1、图中有哪几个等腰三角形?ABCDx⌒2x⌒2x⌒⌒2x应用新知,体验成功。△ABC△ABD△BDC2、有哪些相等的角?∠ABC=∠ACB=∠BDC∠
A=∠ABD3、这两组相等的角之间还有什么关系?∠BDC=2∠
A∠ABC+∠ACB+∠A=180°当前第14页\共有17页\编于星期三\12点例1、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。ABCD解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°,在△ABC中,∠A=36°,∠ABC=∠C=72°x⌒2x⌒2x⌒⌒2x当前第15页\共有17页\编于星期三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学物理电子教案磁场对电流的作用
- C语言程序设计(教案)
- 《丛林故事》选择题(含答案)
- 生物工程实习协议
- 商业综合体弱电布线合同范本
- 网络文学积分管理制度
- 物业管理公司员工聘用协议
- 廉政合同文件
- 养殖场养殖产品志愿服务合同
- 乳制品配送货车司机劳动合同
- 2024电梯土建施工合同范本
- 甘肃省道德与法治初二上学期试题及答案解析
- 《深海》中的色彩叙事与镜像阐释
- 2023年中考英语备考让步状语从句练习题(附答案)
- 柔性生产线设计
- 物业项目交接计划方案
- 汽车维修工时定额核定方法编制说明
- 辛弃疾词《青玉案·元夕》
- T-HNKCSJ 002-2023 河南省地源热泵系统工程技术规范
- 《无人机驾驶基础》课件-项目四 无人机结构及性能
- XX公司安全生产风险管控与隐患排查双重预防管理体系手册
评论
0/150
提交评论