辽宁大连甘井子区育文中学2023年八年级数学第二学期期末检测模拟试题含解析_第1页
辽宁大连甘井子区育文中学2023年八年级数学第二学期期末检测模拟试题含解析_第2页
辽宁大连甘井子区育文中学2023年八年级数学第二学期期末检测模拟试题含解析_第3页
辽宁大连甘井子区育文中学2023年八年级数学第二学期期末检测模拟试题含解析_第4页
辽宁大连甘井子区育文中学2023年八年级数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某旅游纪念品商店计划制作一种手工编织的工艺品600件,制作120个以后,临近旅游旺季,商店老板决定加快制作进度,后来每天比原计划多制作20个,最后共用时11天完成,求原计划每天制作该工艺品多少个?设原计划每天制作该工艺品个,根据题意可列方程()A. B.C. D.2.如图,矩形中,,,点从点出发,沿向终点匀速运动,设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是()A. B. C. D.3.下面各组数是三角形三边长,其中为直角三角形的是()A.8,12,15 B.5,6,8 C.8,15,17 D.10,15,204.已知直线经过点,则直线的图象不经过第几象限()A.一 B.二 C.三 D.四5.如图,在平行四边形ABCD中,对角线AC、BD交于点O,E是CD的中点,若OE=2,则AD的长为()A.2 B.3C.4 D.56.如图,四边形ABCD是长方形,AB=3,AD=1.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,) B.(,﹣3) C.(3,) D.(,3)7.下列条件中,不能判定四边形是平行四边形的是()A., B.,C., D.,8.下列根式中,与3是同类二次根式的是()A.18B.24C.27D.309.在一次数学测试中,某小组的5名同学的成绩(百分制,单位:分)如下:80,98,98,83,96,关于这组数据说法错误的是()A.众数是98 B.平均数是91C.中位数是96 D.方差是6210.在同一坐标系中,函数y=kx与y=3x﹣k的图象大致是()A. B. C. D.11.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等12.要使式子在实数范围内有意义,则的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为▲.14.“同位角相等”的逆命题是__________________________.15.某种数据方差的计算公式是,则该组数据的总和为_________________.16.如图在平面直角坐标系中,A4,0,B0,2,以AB为边作正方形ABCD,则点C的坐标为17.抛物线,当随的增大而减小时的取值范围为______.18.如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是_____.三、解答题(共78分)19.(8分)如图,反比例函数的图象经过点(1)求该反比例函数的解析式;(2)当时,根据图象请直接写出自变量的取值范围.20.(8分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.21.(8分)在△ABC中,∠C=90°,AB=20,若∠A=60°,求BC,AC的长.22.(10分)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在中,,,点、分别在边、上,,连接、,点、、分别为、、的中点,且连接、.观察猜想(1)线段与“等垂线段”(填“是”或“不是”)猜想论证(2)绕点按逆时针方向旋转到图2所示的位置,连接,,试判断与是否为“等垂线段”,并说明理由.拓展延伸(3)把绕点在平面内自由旋转,若,,请直接写出与的积的最大值.23.(10分)如图,已知A(-4,0)、B(0,2)、C(6,0),直线AB与直线CD相交于点D,D点的横纵坐标相同;(1)求点D的坐标;(2)点P从O出发,以每秒1个单位的速度沿x轴正半轴匀速运动,过点P作x轴的垂线分别与直线AB、CD交于E、F两点,设点P的运动时间为t秒,线段EF的长为y(y>0),求y与t之间的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,直线CD上是否存在点Q,使得△BPQ是以P为直角顶点的等腰直角三角形?若存在,请求出符合条件的Q点坐标,若不存在,请说明理由.24.(10分)(1)已知一个正分数(m>n>0),将分子、分母同时增加1,得到另一个正分数,比较和的值的大小,并证明你的结论;(2)若正分数(m>n>0)中分子和分母同时增加k(整数k>0),则_____.(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好.若原来的地板面积和窗户面积分别为x,y,同时增加相等的窗户面积和地板面积,则住宅的采光条件是变好还是变坏?请说明理由.25.(12分)化简:,再从不等式中选取一个合适的整数代入求值.26.如图,在平面直角坐标系中,直线与轴,轴的交点分别为,直线交轴于点,两条直线的交点为,点是线段上的一个动点,过点作轴,交轴于点,连接.求的面积;在线段上是否存在一点,使四边形为矩形,若存在,求出点坐标:若不存在,请说明理由;若四边形的面积为,设点的坐标为,求出关于的函数关系式,并写出自变量的取值范围.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据题意,可以列出相应的分式方程,本题得以解决.【详解】解:由题意可得,,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.2、C【解析】

首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的长度一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【详解】解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选:C.【点睛】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.3、C【解析】试题分析:A.82+122≠152,故不是直角三角形,错误;B.52+62≠82,故不是直角三角形,错误;C.82+152=172,故是直角三角形,正确;D.102+152≠202,故不是直角三角形,错误.故选C.考点:勾股定理的逆定理.4、B【解析】

把点p代入求出b值,再观察k>0,b<0,根据一次函数图象与k,b的关系得出答案.【详解】因为直线经过点,所以b=-3,然后把b=-3代入,得直线经过一、三、四象限,所以直线的图象不经过第二象限.故选:B【点睛】本题考查一次函数y=kx=b(k≠0)图象与k,b的关系(1)图象是过点(-,0),(0,b)的一条直线(2)当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;当k<0,b>0时,图象过一、二、四象限;当k<0,b<0时,图像过二、三、四象限.5、C【解析】

平行四边形中对角线互相平分,则点O是BD的中点,而E是CD边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD=1.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.又∵点E是CD边中点,∴AD=2OE,即AD=1.故选:C.【点睛】此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用.6、D【解析】

由矩形的性质可知CD=AB=3,BC=AD=1,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB=3,BC=AD=1,∵点A(﹣,﹣1),∴点C的坐标为(﹣+3,﹣1+1),即点C的坐标为(,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.7、A【解析】

根据平行四边形的判定方法逐个判断即可解决问题.【详解】解:A、若AB=CD,∠A=∠B,不可以判定四边形ABCD是平行四边形;B、∵AB∥CD,∴∠B+∠C=180°,∵∠A=∠C,∴∠A+∠B=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故B可以判定四边形ABCD是平行四边形;C、根据一组对边平行且相等的四边形是平行四边形,可知C可以判定四边形ABCD是平行四边形;D、根据两组对边分别平行的四边形是平行四边形,可知D可以判定四边形ABCD是平行四边形;故选:A.【点睛】本题考查平行四边形的判定,解题的关键是记住平行四边形的判定方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.8、C【解析】试题分析:A.18=32与B.24=26与C.27=33与D.30与3被开方数不同,故不是同类二次根式.故选C.考点:同类二次根式.9、D【解析】

根据数据求出众数、平均数、中位数、方差即可判断.【详解】A.98出现2次,故众数是98,正确B.平均数是=91,正确;C.把数据从小到大排序:80,83,96,98,98,故中位数是96,正确故选D.【点睛】此题主要考查统计调查的应用,解题的关键是熟知众数、平均数、中位数、方差的求解.10、B【解析】分析:根据图象分别确定k的取值范围,若有公共部分,则有可能;否则不可能.详解:根据图象知:第二个函数一次项系数为正数,故图象必过一、三象限,而y=kx必过一三或二四象限,A.

k<0,−k<0.解集没有公共部分,所以不可能,故此选项错误;B.

k<0,−k>0.解集有公共部分,所以有可能,故此选项正确;C..解集没有公共部分,所以不可能,故此选项错误;D.正比例函数的图象不对,所以不可能,故此选项错误.故选B.点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:

①当时,函数的图象经过第一、二、三象限;

②当时,函数的图象经过第一、三、四象限;

③当时,函数的图象经过第一、二、四象限;

④当时,函数的图象经过第二、三、四象限.11、C【解析】试题分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选C.12、D【解析】

直接利用二次根式有意义的条件得出答案.【详解】解:根据二次根式有意义的条件得:-x+3≥0,解得:.故选:D.【点睛】本题主要考查了二次根式有意义的条件,正确把握定义是解题关键.二、填空题(每题4分,共24分)13、10+.【解析】先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.在Rt△CDE中,DE=1,CE=2,由勾股定理得.∵D是BC的中点,∴BC=1CD=2.在△ABC中,∠ACB=90°,由勾股定理得.∵D是BC的中点,DE⊥BC,∴EB=EC=2.∴四边形ACEB的周长=AC+CE+EB+BA=10+.14、如果两个角相等,那么这两个角是同位角.【解析】因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.15、32【解析】

根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.【详解】∵数据方差的计算公式是,∴样本容量为8,平均数为4,∴该组数据的总和为8×4=32,故答案为:32【点睛】本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.16、2,6或-2,-2【解析】

当点C在AB上方时,过点C作CE⊥y轴于点E,易证△AOB≌△BEC(AAS),根据全等三角形的性质可得BE=AO=4,EC=OB=2,从而得到点C的坐标为(2,6),同理可得当点C在AB下方时,点C的坐标为:(-2,-2).【详解】解:如图所示,当点C在AB上方时,过点C作CE⊥y轴于点E,∵A4,0,B0,2,四边形∴∠BEC=∠AOB=90°,BC=AB,∵∠BCE+∠EBC=90°,∠OBA+∠EBC=90°,∴∠BCE=∠OBA,∴△AOB≌△BEC(AAS),∴BE=AO=4,EC=OB=2,∴OE=OB+BE=6,∴此时点C的坐标为:(2,6),同理可得当点C在AB下方时,点C的坐标为:(-2,-2),综上所述,点C的坐标为:2,6或-2,-2故答案为:2,6或-2,-2.【点睛】本题主要考查坐标与图形以及三角形全等的判定和性质,注意分情况讨论,不要漏解.17、(也可以)【解析】

先确定抛物线的开口方向和对称轴,即可确定答案.【详解】解:∵的对称轴为x=1且开口向上∴随的增大而减小时的取值范围为(也可以)【点睛】本题主要考查了二次函数增减性中的自变量的取值范围,其中确定抛物线的开口方向和对称轴是解答本题的关键.18、x≤1【解析】

根据图象的性质,当y≤0即图象在x轴下侧,x≤1.【详解】根据图象和数据可知,当y≤0即图象在x轴下侧,x≤1.故答案为x≤1【点睛】本题考查一次函数的图象,考查学生的分析能力和读图能力.三、解答题(共78分)19、(1)(2)或【解析】

(1)首先设反比例函数解析式为y=,把点(-1,3)代入反比例函数解析式,进而可以算出k的值,进而得到解析式;(2)根据反比例函数图象可直接得到答案.【详解】(1)设反比例函数解析式为,把点代入得:,∴函数解析式为;(2)或.【点睛】此题主要考查了待定系数法求反比例函数解析式,以及利用函数图象求自变量的值,关键是掌握凡是反比例函数图象经过的点必能满足解析式.20、解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠3,2=∠1.∵MN∥BC,∴∠1=∠3,3=∠1.∴∠1=∠2,∠3=∠2.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠3,∠2=∠1,∴∠2+∠2=∠3+∠1=90°.∵CE=12,CF=3,∴.∴OC=EF=1.3.(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.【解析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠2,进而得出答案.(2)根据已知得出∠2+∠2=∠3+∠1=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.21、【解析】

由已知可得,∠B=30°,根据30°角直角三角形的性质可得AC=10,再由勾股定理即可求得BC的长.【详解】解:∵∠C=90°,∠A=60°,∴∠B=180°-∠C-∠A=180°-90°-60°=30°.∴AC=AB=×20=10.在Rt△ABC中,由勾股定理得BC===10.【点睛】本题考查勾股定理.熟记定理是关键.22、(1)是;(2)是,理由详见解析;(3)49【解析】

(1)根据题意,利用等腰三角形和三角形中位线定理得出,∠MPN=90°判定即可;(2)由旋转和三角形中位线的性质得出,再由中位线定理进行等角转换,得出∠MPN=90°,即可判定;(3)由题意,得出最大时,与的积最大,点在的延长线上,再由(1)(2)结论,得出与的积的最大值.【详解】(1)是;∵,∴DB=EC,∠ADE=∠AED=∠B=∠ACB∴DE∥BC∴∠EDC=∠DCB∵点、、分别为、、的中点∴PM∥EC,PN∥BD,∴,∠DPM=∠DCE,∠PNC=∠DBC∵∠DPN=∠PNC+∠DCB∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°∴线段与是“等垂线段”;(2)由旋转知∵,∴≌()∴,利用三角形的中位线得,,∴由中位线定理可得,∴,∵∴∵∴∴∴与为“等垂线段”;(3)与的积的最大值为49;由(1)(2)知,∴最大时,与的积最大∴点在的延长线上,如图所示:∴∴∴.【点睛】此题主要考查等腰三角形以及三角形中位线的性质,熟练掌握,即可解题.23、(1)D(4,4);(2)y,t的取值范围为:0≤t<4或t>4;(3)存在,其坐标为(,)或(14,-16),见解析.【解析】

(1)根据条件可求得直线AB的解析式,可设D为(a,a),代入可求得D点坐标;(2)分0≤t<4、4<t≤6和t>6三种情况分别讨论,利用平行线分线段成比例用t表示出PE、PF,可得到y与t的函数关系式;(3)分0<t<4和t>4,两种情况,过Q作x轴的垂线,证明三角形全等,用t表示出Q点的坐标,代入直线CD,可求得t的值,可得出Q点的坐标.【详解】解:(1)设直线AB的解析式为y=kx+b,将A(-4,0)、B(0,2)两点代入,解得,k=,b=2,∴直线AB解析式为y=x+2,∵D点横纵坐标相同,设D(a,a),∴a=a+2,∴D(4,4);(2)设直线CD解析式为y=mx+n,把C、D两点坐标代入,解得m=-2,n=12,∴直线CD的解析式为y=-2x+12,∴AB⊥CD,当

0≤t<4时,如图1,设直线CD于y轴交于点G,则OG=12,OA=4,OC=6,OB=2,OP=t,∴PC=6-t,AP=4+t,∵PF∥OG,,,,,当4<t≤6时,如图2,同理可求得PE=2+,PF=12-2t,此时y=PE-PF=t+2−(−2t+12)=t−10,当t>6时,如图3,同理可求得PE=2+,PF=2t-12,此时y=PE+PF=t-10;综上可知y,t的取值范围为:0≤t<4或t>4;(3)存在.当0<t<4时,过点Q作QM⊥x轴于点M,如图4,∵∠BPQ=90°,∴∠BPO+∠QPM=∠OBP+∠BPO=90°,∴∠OPB=∠QPM,在△BOP和△PMQ中,∴△BOP≌△PMQ(AAS),∴BO=PM=2,OP=QM=t,∴Q(2+t,t),又Q在直线CD上,∴t=-2(t+2)+12,∴t=,∴Q(,);当t>4时,过点Q作QN⊥x轴于点N,如图5,同理可证明△BOP≌△PNQ,∴BO=P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论