版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如果一个直角三角形的两条边长分别为和,那么这个三角形的第三边长为()A. B. C. D.或2.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形 B.矩形C.对角线相等的四边形 D.对角线互相垂直的四边形3.关于的方程有实数解,那么的取值范围是()A. B. C. D.且4.下列等式从左到右的变形,属于因式分解的是()A. B.C. D.5.要使关于的分式方程有整数解,且使关于的一次函数不经过第四象限,则满足条件的所有整数的和是()A.-11 B.-10 C.2 D.16.定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2C.﹣2<x<1或x>1 D.x<﹣2或x>27.如图,在平面直角坐标系中,点B在x轴上,△AOB是等腰三角形,AB=AO=5,BO=6,则点A的坐标为()A.(3,4) B.(4,3) C.(3,5) D.(5,3)8.函数中自变量x的取值范围是()A.≥-3 B.≥-3且 C. D.且9.关于的不等式组的解集为,那么的取值范围为()A. B. C. D.10.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h二、填空题(每小题3分,共24分)11.如图,点A的坐标为2,2,则线段AO的长度为_________.12.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=10cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为_____cm.13.使式子的值为0,则a的值为_______.14.如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是_____.15.如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.16.如图,在△ABC中,AB=3,AC=5,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为_____.17.如图,函数y=3x和y=kx+6的图象相交于点A(a,3),则不等式3x≤kx+6的解集为_____.18.若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是_____.三、解答题(共66分)19.(10分)某学校抽查了某班级某月10天的用电量,数据如下表:用电量/度8910131415天数112312(1)这10天用电量的众数是______度,中位数是______度;(2)求这个班级平均每天的用电量;(3)该校共有20个班级,该月共计30天,试估计该校该月总的用电量.20.(6分)阅读材料:解分式不等式3x+解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①3x+6<0解①得:无解,解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列分式不等式:(1)x-42x+5>1;(2)x+221.(6分)一次函数CD:与一次函数AB:,都经过点B(-1,4).(1)求两条直线的解析式;(2)求四边形ABDO的面积.22.(8分)如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连结DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出周长C的最小值.23.(8分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形.24.(8分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.(1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;(2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;(3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.25.(10分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.26.(10分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据告诉的两边长,利用勾股定理求出第三边即可.注意6和10可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当6和10是两条直角边时,
第三边=,
当6和10分别是一斜边和一直角边时,
第三边==8,
所以第三边可能为8或2.
故选:D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.2、C【解析】∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选C.3、B【解析】
由于x的方程(m-2)x2-2x+1=0有实数解,则根据其判别式即可得到关于m的不等式,解不等式即可求出m的取值范围.但此题要分m=2和m≠2两种情况.【详解】(1)当m=2时,原方程变为-2x+1=0,此方程一定有解;
(2)当m≠2时,原方程是一元二次方程,
∵有实数解,
∴△=4-4(m-2)≥0,
∴m≤1.
所以m的取值范围是m≤1.
故选:B.【点睛】此题考查根的判别式,解题关键在于分两种情况进行讨论,错误的认为原方程只是一元二次方程.4、B【解析】
根据因式分解的定义逐个判断即可.【详解】解:A、不是因式分解,故本选项不符合题意;
B、是因式分解,故本选项符合题意;
C、不是因式分解,故本选项不符合题意;
D、不是因式分解,故本选项不符合题意;
故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.5、C【解析】
依据关于一次函数不经过第四象限,求得a的取值范围;依据关于x的分式方程有整数解,即可得到整数a的取值,即可满足条件的所有整数a的和.【详解】关于一次函数不经过第四象限∴a+2>0∴a>-2分式方程有整数解∴为整数且∴a=-3,0,-4,2,-6又a>-2∴a=0,2∴满足条件的所有整数a的和为2故选C.【点睛】本题考查了一次函数的图象与系数的关系以及分式方程的解,注意根据题意求得a的值是关键.6、C【解析】
分3>x+2即x<1和3<x+2即x>1两种情况,根据新定义列出不等式求解可得.【详解】解:当3>x+2,即x<1时,3(x+2)+x+2>0,
解得:x>-2,
∴-2<x<1;
当3<x+2,即x>1时,3(x+2)-(x+2)>0,
解得:x>-2,
∴x>1,
综上,-2<x<1或x>1,
故选C.【点睛】本题主要考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.7、A【解析】
先过点A作AC⊥OB,根据△AOB是等腰三角形,求出OA=AB,OC=BC,再根据点B的坐标,求出OC的长,再根据勾股定理求出AC的值,从而得出点A的坐标.【详解】过点A作AC⊥OB,∵△AOB是等腰三角形,∴OA=AB,OC=BC,∵AB=AO=5,BO=6,∴OC=3,∴AC=,∴点A的坐标是(3,4).故选:A.【点睛】此题考查了等腰三角形的性质,勾股定理,关键是作出辅助线,求出点A的坐标.8、B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.解答:解:∵≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.9、A【解析】
求出每个不等式的解集,找出不等式组的解集,根据已知即可得出x>a,求出即可.【详解】
由①得:x>4,
由②得:x>a,不等式组的解集是∴所以A选项是正确的.【点睛】本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式组的解集x>4得到x>a是解此题的关键.10、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.二、填空题(每小题3分,共24分)11、2【解析】
根据勾股定理计算即可.【详解】解:∵点A坐标为(2,2),∴AO=22故答案为:22【点睛】本题考查了勾股定理的运用和点到坐标轴的距离:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.12、40或.【解析】
利用30°角直角三角形的性质,首先根据勾股定理求出DE的长,再分两种情形分别求解即可解决问题;【详解】如图1中,,,,,,设,在中,,,,如图2中,当时,沿着直线EF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长.如图中,当时,沿着直线DF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长综上所述,满足条件的平行四边形的周长为或,故答案为为或.【点睛】本题考查翻折变换、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.13、【解析】
根据分式值为0,分子为0,分母不为0解答即可.【详解】∵的值为0,∴2a-1=0,a+2≠0,∴a=.故答案为:【点睛】本题考查分式为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式为0的条件是解题关键.14、24【解析】
根据菱形的对角线互相垂直,利用勾股定理列式求出OA,再根据菱形的对角线互相平分求出AC,然后利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】∵四边形ABCD是菱形,∴OB=OD=3,OA=OC,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:,∴AC=2OA=8,∴S菱形ABCD=×AC×BD=×6×8=24.故答案为:24.【点睛】此题考查菱形的性质,勾股定理求线段,菱形的面积有两种求法:①底乘以高;②对角线乘积的一半,解题中根据题中的已知条件选择合适的方法.15、【解析】首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.解:如图所示,过E作EM⊥AC,已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),故选B.“点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.16、1【解析】
根据三角形的中位线平行于第三边,并且等于第三边的一半,以及中点的定义可得DE=AF=12AC,EF=AD=12AB【详解】解:∵在△ABC中,D、E、F分别是AB、BC、AC的中点,∴DE=AF=12AC=2.5,EF=AD=12∴四边形ADEF的周长是(2.5+1.5)×2=1.故答案为:1.【点睛】本题考查了三角形中位线定理,中点的定义以及四边形周长的定义.17、x≤1【解析】
先利用正比例函数解析式确定点坐标,然后利用函数图象,写出直线在直线上方所对应的自变量的范围即可.【详解】解:把代入得,解得,则,根据图象得,当时,.故答案为:【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.18、6【解析】
根据数据a1、a2、a3的平均数是3,数据2a1、2a2、2a3的平均数与数据中的变化规律相同,即可得到答案.【详解】解:∵数据a1、a2、a3的平均数为3,∴数据2a1、2a2、2a3的平均数是6.故答案为:6.【点睛】此题主要考查了平均数,关键是掌握平均数与数据的变化之间的关系.三、解答题(共66分)19、(1)13,13;(2)这个班级平均每天的用电量为12度;(3)估计该校该月总的用电量为7200度.【解析】
(1)根据众数和中位数的定义进行求解;(2)由加权平均数公式求之即可;(3)用每班用电量的平均数×总班数×总天数求解.【详解】解:(1)用电量为13度的天数有3天,天数最多,所以众数是13度;将用电量从小到大排列,处在中间位置的用电量分别为13度,13度,所以中位数是13度.(2)(度).答:这个班级平均每天的用电量为12度.(3)(度).答:估计该校该月总的用电量为7200度.【点睛】此题考查的是统计表的综合运用.读懂统计表,从统计表中得到必要的信息是解决问题的关键.本题还考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.20、(1)x>4或x<-【解析】分析:先把不等式转化为不等式组,然后通过解不等式组来求分式不等式.详解:(1)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①x-4>02x+5>0或②x-4<0解①得:x>4解②得:x<-所以原不等式的解集是:x>4或(2)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①x+2>02x-6<0或②x+2<0解①得:-2<x<3解②得:无解.所以原不等式的解集是:-2<x<3点睛:考查分式不等式,解题的关键是不等式转化为不等式组.21、(1)直线CD的解析式为:;直线AB的解析式为:;(2)四边形ABDO的面积为7.5.【解析】
(1)将B(﹣1,4)代入一次函数CD:与一次函数AB:,可以得到关于k、b的二元一次方程组,解方程组即可得到k、b的值,即可求出两条直线的解析式.(2)由图可知四边形ABDO不是规则的四边形,利用割补法得到,分别算出△ABC与△DOC的面积即可算出答案.【详解】解:(1)∵一次函数CD:与一次函数AB:,都经过点B(﹣1,4),∴将点B(﹣1,4)代入一次函数CD:与一次函数AB:,可得:解得:;∴直线CD的解析式为:;直线AB的解析式为:;(2)∵点A为直线AB与x轴的交点,令y=0得:解得:,∴A(﹣3,0);∵C为直线CD与x轴的交点,令y=0得:解得:,∴C(3,0);∵D为直线CD与y轴的交点,令x=0得y=3∴D(0,3);∴AC=6,OC=3,OD=3;由图可知;∴四边形ABDO的面积为7.5.【点睛】本题考查一次函数解析式的求法以及平面直角坐标系中图形面积的求法.会利用割补法求平面直角坐标系中图形面积是解题关键,在平面直角坐标系中求面积,一般以平行于坐标轴或在坐标轴上的边为底边,这样比较好算出图形的高.22、(1)、;(2);(3)①;②.【解析】
(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE-AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.【详解】(1)∵BC=AD=9,BE=4,∴CE=9-4=5,∵AF=CE,即:3t=5,∴t=,∴,即:,解得BH=;当t=时,AF=CE,此时BH=.(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°∴△EBH∽△DAF∴即∴BH=当点F在点B的左边时,即t<4时,BF=12-3t此时,当△BEF∽△BHE时:即解得:此时,当△BEF∽△BEH时:有BF=BH,即解得:当点F在点B的右边时,即t>4时,BF=3t-12此时,当△BEF∽△BHE时:即解得:(3)①∵EH∥DF∴△DFE的面积=△DFH的面积=;②如图∵BE=4,∴CE=5,根据勾股定理得,DE=13,是定值,所以当C最小时DE+EF最小,作点E关于AB的对称点E'连接DE,此时DE+EF最小,在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,根据勾股定理得,DE'=,∴C的最小值=.【点睛】此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.23、(1)见解析;(2)见解析.【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;【详解】证明:(1)∵AF∥BC∴∠AFE=∠DBE∵E是AD中点,∴AE=DE在△AEF和DEB中∴△AEF≌△DEB(AAS)(2)在Rt△ABC中,D是BC的中点,所以,AD=BD=CD又AF∥DB,且AF=DB,所以,AF∥DC,且AF=DC,所以,四边形ADCF是菱形.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键.24、(1)①,②平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,理由详见解析;(3)【解析】
(1)根据三角形中位线定理,即可得出,进而得解;由三角形中位线定理得出DE∥AC,,即可判定为平行四边形;(2)由中位线定理得出,,,然后根据,得出,,即可判定平行四边形是菱形;(3)首先设,,根据等腰直角三角形的性质,得出,进而得出,然后由三角形中位线定理得,,经分析可知:,且和互相垂直平分,即可得出四边形为正方形,又由,,,得出四边形为矩形,即可得出面积比.【详解】解:(1)①,②平行四边形;由已知条件和三角形中位线定理,得又∵∴②由三角形中位线定理得,DE∥AC,,∴四边形是平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,四边形是菱形的理由是:∵,都是的中位线,∴,∴四边形是平行四边形∵是的中位线,∴∵∴,∴∴平行四边形是菱形.(3)设,当,是等腰直角三角形,∴∴由三角形中位线定理得,,∴,且和互相垂直平分∴四边形为正方形,∵,EF⊥AD,∴∴又∵,∴四边形为矩形,∴,∴所求面积比为【点睛】(1)此题主要考查三角形中位线定理的应用,利用其进行等式转换和平行四边形的判定,即可得解;(2)此题主要考查菱形的判定,熟练掌握,即可解题;(3)此题主要考查正方形和矩形的判定,关键是利用正方形和矩形的面积关系式,即可解题.25、(1)1s;(2)s;(3)3s.【解析】
(1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;(3)设经过t(s),四边形PQCD是等腰梯形,利用EP=2列出有关t的方程求解即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度产品代理合同:某生产商与一家代理商就产品销售达成合作协议3篇
- 2024年度某企业员工股权激励合同3篇
- A组链球菌感染的临床护理
- 2024年度广告代理推广服务合同6篇
- 2024年度仓储物流仓储租赁合同6篇
- 2024年度企业间借贷合同借款金额和利息3篇
- 基于物联网的二零二四年度智能路灯系统设计与施工合同2篇
- 2024年染料类项目资金需求报告代可行性研究报告
- 房江湖2024年度合作开发合同
- 2024年度新能源发电项目监理合同标的详细说明2篇
- 《基于核心素养高中物理实验教学实施素质教育的研究》结题总结报告
- 行政人事部工作分析表
- 英语漫谈胶东海洋文化知到章节答案智慧树2023年威海海洋职业学院
- 航空母舰优秀课件
- 2023年芒果TV春季校园招聘笔试参考题库附带答案详解
- 共享中国知到章节答案智慧树2023年上海工程技术大学
- 中国十大传世名画课件
- mbti性格测试题及答案(十篇)
- 钢筋加工厂龙门吊的安装与拆除专项施工方案
- GB/T 2007.2-1987散装矿产品取样、制样通则手工制样方法
- GB/T 17710-2008信息技术安全技术校验字符系统
评论
0/150
提交评论