版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在下列各式由左到右的变形中,不是因式分解的是()A. B.C. D.2.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=55°,则∠ACD的度数为()A.65° B.60° C.55° D.45°3.某玩具厂要生产a只吉祥物“欢欢”,原计划每天生产b只,实际每天生产了(b+c)只,则该厂提前完成任务的天数是()A. B. C. D.4.若关于x的一元二次方程x2+mx+n=0的两个实根分别为5,﹣6,则二次三项式x2+mx+n可分解为()A.(x+5)(x﹣6) B.(x﹣5)(x+6) C.(x+5)(x+6) D.(x﹣5)(x﹣6)5.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为A.1 B.﹣1 C.2 D.﹣26.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2 B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1) D.2x+y=2(x+y)7.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A.y=10x+30 B.y=40x C.y=10+30x D.y=20x8.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁9.如图所示,在中,分别是的中点,分别交于点.下列命题中不正确的是()A. B.C. D.10.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为6,则重叠部分四边形EMCN的面积为()A.9 B.12 C.16 D.3211.分式方程xx-1-1=3(x-1)(x+2)A.x=1B.x=-1C.无解D.x=-212.如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=()A.33° B.80° C.57° D.67°二、填空题(每题4分,共24分)13.函数与的图象如图所示,则的值为____.14.若是一个完全平方式,则______.15.如图,在△ABC中,AB=5,BC=7,EF是△ABC的中位线,则EF的长度范围是________.16.有两名学员小林和小明练习飞镖,第一轮10枚飞镖掷完后两人命中的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______;这名选手的10次成绩的极差是______.17.若b为常数,且﹣bx+1是完全平方式,那么b=_____.18.如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,当点F是CD的中点时,若AB=4,则BC=_____.三、解答题(共78分)19.(8分)如图,在矩形中;点为坐标原点,点,点、在坐标轴上,点在边上,直线交轴于点.对于坐标平面内的直线,先将该直线向右平移个单位长度,再向下平移个单位长度,这种直线运动称为直线的斜平移.现将直线经过次斜平移,得到直线.(备用图)(1)求直线与两坐标轴围成的面积;(2)求直线与的交点坐标;(3)在第一象限内,在直线上是否存在一点,使得是等腰直角三角形?若存在,请直接写出点的坐标,若不存在,请说明理由.20.(8分)如图,已知点E,F分别是平行四边形ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若AC=4,AB=5,求菱形AECF的面积.21.(8分)甲、乙两家旅行社为了吸引更多的顾客,分别推出赴某地旅游的团体(多于4人)优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按半价优惠;乙旅行社的优惠办法是:所有人都打七五折优惠.已知这两家旅行社的原价均为每人1000元,那么随着团体人数的变化,哪家旅行社的收费更优惠.22.(10分)在平面直角坐标系中,已知点A(﹣4,2),B(﹣4,0),C(﹣1,1),请在图上画出△ABC,并画出与△ABC关于原点O对称的图形.23.(10分)如图,在平面直角坐标系中,点是原点,四边形是菱形,点的坐标为,点在轴的负半轴上,直线与轴交于点,与轴交于点.(1)求直线的解析式;(2)动点从点出发,沿折线方向以1个单位/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.24.(10分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,连接CD,交BE于点F.求证:BE垂直平分CD.25.(12分)“黄金1号”玉米种子的价格为5元/kg.如果一次购买5kg以上的种子,超过5kg部分的种子价格打8折.(1)购买3kg种子,需付款元,购买6kg种子,需付款元.(2)设购买种子xkg,付款金额为y元,写出y与x之间的函数解析式.(3)张大爷要购买种子5千克,李大爷要购买种子4千克,怎样购买让他们花钱最少?他们各应付款多少元?(结果保留整数)26.如图,一架梯子AB斜靠在一竖直的墙OA上,这时AO=2m,∠OAB=30°,梯子顶端A沿墙下滑至点C,使∠OCD=60°,同时,梯子底端B也外移至点D.求BD的长度.(结果保留根号)
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是因式分解,故A不符合题意;B、是整式的乘法,故B符合题意;C、是因式分解,故C不符合题意;D、是因式分解,故D不符合题意;故选:B.【点睛】本题考查了因式分解的意义.熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.2、A【解析】
先根据题意得出MN是线段BC的垂直平分线,故可得出CD=BD,即∠B=∠BCD,再由∠B=30°、∠A=55°知∠ACB=180°-∠A-∠B=95°,根据∠ACD=∠ACB-∠BCD即可。【详解】解:根据题意得出MN是线段BC的垂直平分线,∵CD=BD,∴∠B=∠BCD=30°.∵∠B=30°,∠A=55°,∴∠ACB=180°-∠A-∠B=95°,∴∠ACD=∠ACB-∠BCD=65°,故选:A.【点睛】本题考查的是作图一基本作图,熟知线段垂直平分线的作法是解答此题的关键.3、D【解析】试题解析:玩具厂要生产a只吉祥物“欢欢”,原计划每天生产b只,原计划的时间是天,实际每天生产了(b+c)只,实际用的时间是天,可提前的天数是故选D.4、B【解析】
根据题意,把x=5和x=-6分别代入方程,构成含m、n的二元一次方程组,解出m、n的值,然后可得二次三项式,再根据“十字相乘法”因式分解即可.【详解】根据题意可得解得所以二次三项式为x2+x-30因式分解为x2+x-30=(x﹣5)(x+6)故选B.【点睛】此题主要考查了因式分解法解一元二次方程的应用,关键是利用x2+(p+q)x+pq=(x+p)(x+q)进行解答.5、A【解析】试题分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立,因此,∵x=3是原方程的根,∴将x=3代入原方程,即32﹣3k﹣6=0成立,解得k=1.故选A.6、C【解析】
解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.7、A【解析】
根据师生的总费用,可得函数关系式.【详解】解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,故选A.【点睛】本题考查了函数关系式,师生的总费用的等量关系是解题关键.8、A【解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:首先比较平均数:甲=丙>乙=丁,
∴从甲和丙中选择一人参加比赛,
再比较方差:丙>甲
∴选择甲参赛,
所以A选项是正确的.【点睛】本题考查的是方差,熟练掌握方差的性质是解题的关键.9、A【解析】
证出四边形AMCN是平行四边形,由平行四边形的性质得出选项B正确,由相似三角形的性质得出选项C正确,由平行四边形的面积公式得出选项D正确,即可得出结论.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠BAD=∠BCD,∵M、N分别是边AB、CD的中点,∴CN=CD,AM=AB,∴CN=AM,∴四边形AMCN是平行四边形,∴AN∥CM,∠MAN=∠NCM,∴∠DAN=∠BCM,选项B正确;∴△BMQ∽△BAP,△DPN∽△DQC,∴BQ:BP=BM:AB=1:2,DP:DQ=DN:CD=1:2,∴DP=PQ,BQ=PQ,∴DP=PQ=QB,∴BP=DQ,选项C正确;∵AB=2AM,∴S▱AMCN:S▱ABCD=1:2,选项D正确;故选A.【点睛】此题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识.此题难度适中,注意掌握数形结合思想的应用.10、C【解析】
过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.【详解】过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为6,∴AC=6,∵EC=2AE,∴EC=4,∴EP=PC=4,∴正方形PCQE的面积=4×4=16,∴四边形EMCN的面积=16,故选C【点睛】此题考查正方形的性质,全等三角形的判定与性质,解题关键在于作辅助线11、C【解析】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3,解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程无解.故选C.点睛:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12、A【解析】
根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.【详解】解:在△ABC中,∠A=33°,
∴由平移中对应角相等,得∠EDF=∠A=33°.
故选:A.【点睛】此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.二、填空题(每题4分,共24分)13、1【解析】
将x=1代入可得交点纵坐标的值,再将交点坐标代入y=kx可得k.【详解】解:把x=1代入得:y=1,∴与的交点坐标为(1,1),
把x=1,y=1代入y=kx得k=1.
故答案是:1.【点睛】本题主要考查两条直线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式.14、【解析】
根据完全平方公式的结构特征进行判断即可确定出m的值.【详解】∵x2+2mx+1是一个完全平方式,∴m=±1,故答案为:±1.【点睛】本题考查了完全平方式,熟练掌握完全平方式的结构特征是解题的关键.本题易错点在于:是加上或减去两数乘积的2倍,在此有正负两种情况,要全面分析,避免漏解.15、1<EF<6【解析】
∵在△ABC中,AB=5,BC=7,∴7-5<AC<7+5,即2<AC<12.又∵EF是△ABC的中位线,∴EF=AC∴1<EF<6.16、小林,9环【解析】
根据折线统计图中小明与小林的飞镖命中的环数波动性大小以及极差的定义,即可得到答案.【详解】根据折线统计图,可知小林是新手,小林10次成绩的极差是10-1=9(环)故答案为:小林,9环.【点睛】本题主要考查折线统计图中数据的波动性与极差的定义,掌握极差的定义:一组数据中,最大数与最小数的差,是解题的关键.17、±1【解析】
根据完全平方式的一般式,计算一次项系数即可.【详解】解:∵b为常数,且x2﹣bx+1是完全平方式,∴b=±1,故答案为±1.【点睛】本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.18、【解析】分析:如下图,延长EF与BC的延长线相交于点H,由已知条件易证:AE=AB=4,BE=,△DEF≌△CHF,从而可得DE=CH,∠DEF=∠H=∠BEH,从而可得BH=BE=,设BC=,则AD=,由此可得DE=AD-AE=,CH=BH-BC=,由此可得,解此方程即可求得BC的值.详解:如下图,延长EF与BC的延长线相交于点H,设BC=,∵四边形ABCD是矩形,∴∠A=∠D=∠HCF=∠ABC=90°,CD=AB=4,AD=BC=,AD∥BC,∴∠AEB=∠CBE,∠DEF=∠H,∵BE平分∠ABC,∴∠AEB=∠CBE=∠ABE,∴AE=AB=4,∴BE=,DE=AD-AE=,∵点F是DC的中点,EF平分∠BED,∴DF=FC,∠DEF=∠BEF=∠H,∴△DEF≌△CHF,BH=BE=,∴DE=CH=BH-BC=,∴,解得:,∴BC=.点睛:“作出如图所示的辅助线,由已知条件证得BH=BE=,通过证△DEF≌△CHF得到DE=CH,从而得到AD-AE=BH-BC”是解答本题的关键.三、解答题(共78分)19、(1);(2)直线与的交点坐标;(3)存在点的坐标:或或.【解析】
1)直线与两坐标轴围成的面积,即可求解;(2)将直线经过2次斜平移,得到直线,即可求解;(3)分为直角、为直角、为直角三种情况,由等腰直角三角形构造K字形全等,由坐标建立方程分别求解即可.【详解】解:(1)矩形,,,直线交轴于点,把代入中,得,解得,直线,当,,;(2)将直线经过次斜平移,得到直线直线直线当,∴直线与的交点坐标;(3)①当为直角时,如图1所示:在第一象限内,在直线上不存在点;②当为直角时,,过点作轴的平行线分别交、于点、,如图(3),设点,点,,,,,,,,即:,解得:或,故点,或,,③当为直角时,如图4所示:,过Q点作FQ垂直于y轴垂足为F,过M点作MG垂直FQ垂足为G,同理可得:FQ=MG,AF=DG,设Q点坐标为(4,n),0<n<3,则AF=DG=3-n,FQ=MG=4则M点坐标为(7-n,4+n),代入,得,解得:故点;综上所述:点的坐标:或或【点睛】本题考查的是二次函数综合运用,涉及到等腰直角三角形的性质、图形的平移、面积的计算等,在坐标系中求解等腰直角三角形问题时构造K字型全等是解题关键.其中(3),要注意分类求解,避免遗漏.20、(1)见解析;(2)10.【解析】
(1)由平行四边形的性质可得BC=AD,BC∥AD,由中点的性质可得EC=AF,可证四边形AECF为平行四边形,由直角三角形的性质可得AE=EC,即可得结论;(2)可求S△ABC=12AB×AC=10,即可求菱形AECF【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E,F分别是边BC,AD上的中点∴AF∥EC,AF=EC∴四边形AECF是平行四边形.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=12∴平行四边形AECF是菱形.(2)∵∠BAC=90°,AB=5,AC=4,∴S△ABC=12∵点E是BC的中点,∴S△AEC=12S△∵四边形AECF是菱形∴四边形AECF的面积=2S△AEC=10.【点睛】本题考查了菱形的判定和性质,直角三角形的性质,三角形的面积公式,熟练运用菱形的判定是本题的关键.21、当团体人数超过8人时,选甲旅行社收费更优惠;当团体人数为8人时,两家旅行社收费相同;当团体人数少于8人时,选乙旅行社收费更优惠.【解析】
设团体有x人,收费y元,得出y甲=4000+500(x-4)=500x+2000,y乙=750x,再分情况列不等式和方程求解可得.【详解】设团体有人,收费元∴,∵当时,,解得;∴当时,,解得;当时,,解得;∴当团体人数超过8人时,选甲旅行社收费更优惠;当团体人数为8人时,两家旅行社收费相同;当团体人数少于8人时,选乙旅行社收费更优惠.【点睛】本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的相等关系与不等关系.22、见解析【解析】
根据坐标分别在坐标系中描出各点,再顺次连接各点组成的图形即为所求;根据中心对称的特点,找到对应点坐标,再连线即可【详解】如图所示:△A′B′C′与△ABC关于原点O对称.【点睛】此题主要考查了作关于原点成中心对称的图形,得出对应点的位置是解题关键.23、(1);(2).【解析】
(1)由点A的坐标,求出OA的长,根据四边形ABCO为菱形,利用菱形的四条边相等得到OC=OA,求出OC的长,即可确定出C的坐标,设直线AC解析式为y=kx+b,将A与C代入求出k与b的值,即可确定出直线AC的解析式;(2)对于直线AC解析式,令x=0,得到y的值,即为OE的长,由OD-OE求出DE的长,当点P在线段AB上时,由P的速度为1个单位/秒,时间为t秒,表示出AP,由AB-AP表示出PB,△PEB以PB为底边,DE为高,表示出S与t的关系式,并求出t的范围即可;当P在线段BC上时,设点E到直线BC的距离h,由P的速度为1个单位/秒,时间为t秒,则BP的长为t-5,△ABC的面积为菱形面积(OC为底,OD为高)的一半,△AEB的面积以AB为底,DE为高,△BEC以BC为底边,h为高,利用等量关系式,建立方程,解出h的值,△PEB以BP为底边,h为高,表示出S与t的关系式,并求出t的范围即可.【详解】解:(1)∵点的坐标为,∴,在中,根据勾股定理,∴,∵菱形,∴,∴,设直线的解析式为:,把代入得:解得,∴;(2)令时,得:,则点,∴,依题意得:,①当点在直线上运动时,即当时,∴,②当点在直线上时,即当时,∴;设点E到直线的距离,∴,∴,∴,∴,综上得:.故答案为(1);(2).【点睛】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,待定系数法求一次函数解析式,勾股定理,菱形的性质,利用了数形结合及分类讨论的思想,熟练掌握待定系数法是解本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大头针制造机产业链招商引资的调研报告
- 特教生口语突破-探索有效训练方法
- 芯片集成电路产品供应链分析
- 剃须凝胶产品供应链分析
- 5G智能物流行业相关项目经营管理报告
- 商业战略规划服务行业相关项目经营管理报告
- 制药废水处理行业营销策略方案
- 电子教学学习机商业机会挖掘与战略布局策略研究报告
- 表盘项目营销计划书
- 美甲凝胶项目运营指导方案
- 金融行业视频监控联网解决方案
- 脚手架及模板工程安全培训课件
- 遗传性痉挛性截瘫duwanliang
- 上海教师招聘考试:中小学音乐学科专业知识考试真题及答案
- 武术剑术组合
- 隧道施工控制要点及措施ppt课件
- 公共卫生科工作规划[新].doc
- (完整)断路器调试报告
- 脑梗死标准病历、病程记录、出院记录模板
- 突发性耳聋病人的心理护理
- 弱电系统施工方案(完整版)
评论
0/150
提交评论