八年级上册数学学科教学计划范本(2篇)_第1页
八年级上册数学学科教学计划范本(2篇)_第2页
八年级上册数学学科教学计划范本(2篇)_第3页
八年级上册数学学科教学计划范本(2篇)_第4页
八年级上册数学学科教学计划范本(2篇)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6页共6页八年级上册数学学科教学计划范本一、学生基本情况:二、教材分析本学期教学内容,共计五章,知识的前后联系,教材的德育因素,重、难点分析如下:第十六章数的开方本章主要学平方根与立方根,二次根式的概念与四则混合运算,实数与数轴及其相关知识。这一章是孩子们初中学习的一个里程碑,他们要从有理数进入到无理数的领域,认识上将从有理数扩展到实数的范围,将进一步深化对数的认识,扩大学生的数学视野与界限,实数是后继学习内容的基础,直到复数的引入是学生所涉及的主要内容。教材从实际问题出发,归纳出平方根与立方根的概念,进而展开根式的四则混合运算,接着前进到实数,完成对数系的扩充。本章的重点是平方根与立方根的概念,二次根式的化简与运算,实数的概念。要教学中要学生充分去讨论与思考,归纳与总结,历经知识发展与运用过程中的坎坎坷坷,做到对概念的深刻掌握与运算的熟练进行,对一些要经常运用到的化简要在课堂让就要让孩子们掌握,不要寄希望于课外,否则会增加差生的人数。第十七章函数及其图像本章的学习会带来学生在认识上的又一大飞跃,学生要从常量的学习中进入到变量的学习中,是继方程和不等式之后的深入学习,函数是刻画和研究现实世界数量关系的重要的数学模型,它同时也是一种重要的数学思想。本章的主要内容是变量与函数、平面直角坐标系、函数的图像、一次函数、反比例函数与探索和实践等。本章的重点是函数的定义(也是整个数学中最重要的基本概念之一)、函数自变量的取值范围、一次函数、正比例函数与反比例函数的性质与图像。其难点是函数定义的理解(这个理解的过程将一直延伸甚至大学),实际应用中确定自变量的取值范围,对一次函数、正比例函数图像与性质的应用,解决实际的应用问题。通过本章的学习掌握相关的知识,同时养成数形结合的思考形式和思考方法,代数式、方程、函数、图形、直角坐标系结合起来进行思考,互相解释、互相补充,对于整个中学数学的学习,愈往后,愈显出其重要性,通过本章的学习,要为数形结合能力打下良好的基础。培养学生的应用意识。这一章的学习对中等与中等偏下的孩子有一定的难度,主要是对知识的理解困难,对知识间的相互转换感到困难,比如由一次函数解析式迅速转换为其等价的图像,以及由函数图像迅速转换为其等价解析式,或者不能看到函数解析式就可以在头脑中建立这个图像。解决这个问题的关键是要学生多画图、多思考,适当的放慢教学进度。对知识要达到熟练的转换的程度,并且要求在课堂上掌握这些知识。第十八章图形的相似本章的学习将使得孩子们对几何的认识也来一个飞跃,以前学习主要是全等变换,无论轴对称还是中心对称,平移还是旋转,其本质是全等变换,对线段之间关系,大多数涉及两条线段的关系,进入这一章之后,很多时候要涉及到四条线段间的相互制约与和谐的关系,其证明题的难度显著增加,随着知识前进到圆后,其很多知识要都依赖于相似的基本理论,在平面几何的学习中,“相似是关键”。本章的重点是相似图形的性质与特征,相似三角形的判定与性质,利用直角坐标系研究图表变换。难点是比例线段的性质、相似三角形的判定与性质及其应用。要通过观察、测量、画图与推理等方法让学生经历获得知识的过程,强调合情推理,给学生注入对称的思想(这里的对称非几何中的对称,是广义的对称),注重特征图形的使用,对知识的记忆注重图形的位置记忆,而非字母的记忆,这样能极大限度的缩短学生的学习时间,对比例式的变换要达到随心所欲的程度,这些工作要在课堂中解决。第十九章解直角三角形本章是三角函数的基础,本章知识更直观的说明,数学来源于生活,又作用于知识,解决生活中的实际问题,也是学生对数学知识认识的一个深化过程。本章的重点是勾股定理及其证明,直角三角形的边角关系,解直角三角形(三角形边角关系的应用),难点是运用灵活运用勾股定理解决实际问题,对锐角三角函数的理解及其合理应用,解决实际问题。本章的关键是熟记特殊的锐角三角形函数,熟练进行三角函数定义的变形及其应用,充分运用本章中的两个特征图形,能极大的缩短学生的学习时间,并能让孩子把知识掌握牢固。教学中即要注重理论知识的学习,学习理论是为了更好的解决实际问题,同时在教学中要根据新课改的理念突出实践性与研究性,突出学数学、用数学的意识与过程。对勾股定理和三角函数的应用尽量和实际问题联系起来。第二十章数据的整理和初步处理本章是在前面学习统计与概率的基础上的进一步学习。本章的主要内容是选择合适的图表进行数据整理,极差、方差、标准差的概念及其计算,理性分析机会大小。难点对选择好的图形准确的画出图形,方差的计算,机会大小的分析。教学中要让学生经历数据的收集与整理的过程,以学生合作探索活动为主。选取问题力求贴近学生的生活,使用计算器处理相关数据。三、本期教学任务:通过本期的学习,在知识与技能上,学习方根与立方根的相关知识,学习实数;掌握二次根式的计算或化简,初步理解函数的定义,掌握理解一次函数、反比例函数的性质与图像及其应用,培养数形结合的思想方法,掌握比例线段,三角形相似,勾股定理,三角函数的定义及其应用,解直角三角形,掌握数据的整理和初步处理中的相关内容。通过本学期的学习,学生在数学的认识与理解上应该要上一个台阶。在情感与态度上,通过本期的学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。在过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到“漫江碧透,鱼翔浅底”的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。四、提高学科教育质量的主要措施:1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。2、兴趣是的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。八年级上册数学学科教学计划范本(二)教学目标:1、了解勾股定理及其逆定理的证明方法2、结合具体例子了解逆命题的概念,会识别两个互逆命题、知道原命题成立其逆命题不一定成立。教学重点、难点:进一步掌握演绎推理的方法。教学过程:一、温故知新1、你记得勾股定理的内容吗?你曾经用什么方法得到了勾股定理?(由学生回顾得出勾股定理的内容。)定理:直角三角形两条直角边的平方和等于斜边的平方。二、学一学1、问题情境:在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?已知:在ΔABC中,AB2+AC2=BC2求证:ΔABC是直角三角形ABC(讲解证明思路及证明过程,引导学生领会证明思路及证明过程,得出结论。)结论:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。2、议一议:观察下列三组命题,它们的条件和结论之间有怎样的关系?如果两个角是对顶角,那么它们相等。如果两个角相等,那么它们是对顶角。如果小明患了肺炎,那么他一定会发烧。如果小明发烧,那么他一定患了肺炎。三角形中相等的边所对的角相等。三角形中相等的角所对的边相等。(引导学生观察这些成对命题的条件和结论之间的关系,归纳出它们的共性,进一步得出“互逆定理”的概念。)3、关于互逆命题和互逆定理。(1)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。(2)一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论