




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米 B.(60+160) C.160米 D.360米2.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40° B.45° C.50° D.55°3.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm4.如果,那么的值为()A.1 B.2 C. D.5.在同一直角坐标系中,函数y=kx-k与(k≠0)的图象大致是()A. B.C. D.6.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52° B.38° C.42° D.60°7.计算(—2)2-3的值是()A、1B、2C、—1D、—28.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高()A.-4℃ B.4℃ C.8℃ D.-8℃9.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A. B. C. D.10.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:4二、填空题(共7小题,每小题3分,满分21分)11.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于____;(2)在△ABC的内部有一点P,满足S△PABS△PBCS△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.13.在平面直角坐标系中,点A的坐标是(-1,2).作点A关于x轴的对称点,得到点A1,再将点A1向下平移4个单位,得到点A2,则点A2的坐标是_________.14.化简;÷(﹣1)=______.15.若关于的一元二次方程有实数根,则的取值范围是________.16.如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_____.17.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.三、解答题(共7小题,满分69分)18.(10分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).19.(5分)解分式方程:.20.(8分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若AD=23,AE=6,求EC的长.21.(10分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的长.22.(10分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:本次抽查的样本容量是
;在扇形统计图中,“主动质疑”对应的圆心角为
度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?23.(12分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2时,x的取值范围.24.(14分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,.求AD的长;求证:FC是的切线.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作AD⊥BC于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.∴BC=BD+DC=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.2、D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质3、C【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.4、D【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.【详解】故选:D.【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.5、D【解析】
根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.6、A【解析】试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.考点:平行线的性质.7、A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。解答本题的关键是掌握好有理数的加法、乘方法则。8、C【解析】
根据题意列出算式,计算即可求出值.【详解】解:根据题意得:6-(-2)=6+2=8,
则室内温度比室外温度高8℃,
故选:C.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解题的关键.9、B【解析】
根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【详解】解:主视图,如图所示:.故选B.【点睛】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.10、C【解析】
由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.二、填空题(共7小题,每小题3分,满分21分)11、;答案见解析.【解析】
(1)AB==.故答案为.(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.12、【解析】
科学记数法的表示形式为ax10n的形式,其中1≤lal<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.0000872=故答案为:【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13、(-1,-6)【解析】
直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.【详解】∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,
∴A1(-1,-2),
∵将点A1向下平移4个单位,得到点A2,
∴点A2的坐标是:(-1,-6).
故答案为:(-1,-6).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14、-【解析】
直接利用分式的混合运算法则即可得出.【详解】原式,,,.故答案为.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.15、【解析】
由题意可得,△=9-4m≥0,由此求得m的范围.【详解】∵关于x的一元二次方程x2-3x+m=0有实数根,∴△=9-4m≥0,求得m≤.故答案为:【点睛】本题考核知识点:一元二次方程根判别式.解题关键点:理解一元二次方程根判别式的意义.16、【解析】
由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,从而求得EF的值.【详解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF==.故答案为【点睛】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.17、【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.三、解答题(共7小题,满分69分)18、(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).【解析】
(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解析式为y=12x,再由反比例函数图象上点的坐标特征得出y1=122m=6m,y2=126m=2m,然后根据y1﹣y2(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程12•4【详解】解:(1)设反比例函数的解析式为y=kx∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=12x∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,∵点B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面积是8,∴12∴12•4∴PE=4m,∵E(2m,1),点P在x轴上,∴点P坐标为(﹣2m,1)或(6m,1).【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.19、.【解析】试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验.试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解.考点:解分式方程.20、(1)证明见解析;(2)1.【解析】试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;(2)设⊙O的半径为r,根据勾股定理得62+r2=(r+23)2,解得r=23,根据平行线分线段成比例定理,由OE∥BC得AECE试题解析:(1)证明:取BD的中点0,连结OE,如图,∵DE⊥EB,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;(2)解:设⊙O的半径为r,则OA=OD+DA=r+23,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+23)2,解得r=23,∵OE∥BC,∴AECE=AO∴CE=1.考点:1、切线的判定;2、勾股定理21、(1)见解析;(2)【解析】
(1)根据矩形的性质可得AB=CD,∠C=∠A=90°,再根据折叠的性质可得DE=CD,∠C=∠E=90°,然后利用“角角边”证明即可;
(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可.【详解】(1)证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折叠得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,设AF=x,则BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣x)2=x2+62,x=,即AF=【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键.22、(1)560;(2)54;(3)补图见解析;(4)18000人【解析】
(1)本次调查的样本容量为224÷40%=5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 砂纸出口合同范本
- 车辆合租合同范本
- 捐赠土地合同范本
- 饲料赊销合同范本
- NaOH-Na2CO3复合碱烧结法从二次铝灰中提取氧化铝的研究
- 白黄苦参洗剂塌渍联合羟氯喹治疗面部激素依赖性皮炎(湿热壅滞证)的临床疗效观察
- 基于自适应协同相关性学习的半监督多标签特征选择
- 科技前沿下的商业创新机遇
- 绿色创新失败对企业再创新的影响研究
- H消防设备公司市场竞争力提升策略研究
- 第1课 おじぎ 课件高中日语人教版第一册-1
- 08SG510-1 轻型屋面平行弦屋架(圆钢管、方钢管)
- 事前绩效评估具体工作实施方案
- 六年级下册语文第一单元测试卷 部编版(含答案)
- 2024年湖南高速铁路职业技术学院单招职业适应性测试题库新版
- 《研学旅行市场营销》课件-研学旅行市场营销之社群营销
- clsim100-32药敏试验标准2023中文版
- LNG加气站质量管理手册
- 艰难梭菌感染动物模型的建立及其应用评价
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 2024年公安部直属事业单位招聘笔试参考题库附带答案详解
评论
0/150
提交评论