2023届浙江省台州玉环重点中学中考数学模试卷含解析_第1页
2023届浙江省台州玉环重点中学中考数学模试卷含解析_第2页
2023届浙江省台州玉环重点中学中考数学模试卷含解析_第3页
2023届浙江省台州玉环重点中学中考数学模试卷含解析_第4页
2023届浙江省台州玉环重点中学中考数学模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,为的直径,为上两点,若,则的大小为().A.60° B.50° C.40° D.20°2.在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣3.下列运算正确的是()A.a•a2=a2 B.(ab)2=ab C.3﹣1= D.4.sin45°的值等于()A. B.1 C. D.5.计算(-ab2)3÷(-ab)2的结果是()A.ab4B.-ab4C.ab3D.-ab36.计算﹣8+3的结果是()A.﹣11 B.﹣5 C.5 D.117.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为()A.8064 B.8067 C.8068 D.80728.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为()A.﹣4 B.7﹣4 C.6﹣ D.9.不等式4-2x>0的解集在数轴上表示为()A. B. C. D.10.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值2二、填空题(共7小题,每小题3分,满分21分)11.已知(x-ay)(x+ay),那么a=_______12.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.13.正多边形的一个外角是,则这个多边形的内角和的度数是___________________.14.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.15.三角形的每条边的长都是方程的根,则三角形的周长是.16.如图,直线l1∥l2,则∠1+∠2=____.17.函数的自变量x的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?19.(5分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.求证:;若的直径长8,,求BE的长.20.(8分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.(10分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.22.(10分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)23.(12分)如图,在四边形中,为一条对角线,,,.为的中点,连结.(1)求证:四边形为菱形;(2)连结,若平分,,求的长.24.(14分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,∵为的直径,∴.∵,∴,∴.故选:B.【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.2、A【解析】

根据正数大于0,0大于负数,正数大于负数,比较即可【详解】∵-3<-<0<0.3∴最大为0.3故选A.【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.3、C【解析】

根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.【详解】解:A、原式=a3,所以A选项错误;B、原式=a2b2,所以B选项错误;C、原式=,所以C选项正确;D、原式=2,所以D选项错误.故选:C.【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.4、D【解析】

根据特殊角的三角函数值得出即可.【详解】解:sin45°=,故选:D.【点睛】本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.5、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.6、B【解析】

绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【详解】解:−8+3=−2.故选B.【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.7、C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即Sn=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.故选C.点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.8、A【解析】∵O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,∴EO=−1,∴AE2=AO2+EO2=12+(−1)2=4−2,∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,故选:A.9、D【解析】

根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,

系数化为1,得:x<2,

故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10、D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,

由韦达定理得:x1+x2=m-3,x1•x2=-m,则两交点间的距离d=|x1-x2|==,∴m=1时,dmin=2.故选D.二、填空题(共7小题,每小题3分,满分21分)11、±4【解析】

根据平方差公式展开左边即可得出答案.【详解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案为:±4.【点睛】本题考查的平方差公式:.12、1或1【解析】

由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.【详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=1.故答案为:1或1【点睛】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.13、540°【解析】

根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和14、【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为,故答案为:.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15、6或2或12【解析】

首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.【详解】由方程,得=2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.16、30°【解析】

分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.【详解】如图,分别过A、B作l1的平行线AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案为30°.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17、x≠1【解析】

根据分母不等于2列式计算即可得解.【详解】由题意得,x-1≠2,解得x≠1.故答案为x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为2.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)当t=3时,△AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即可解决问题;【详解】(1)如图①中,∵C(6,0),∴BC=6在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由题意知,当0<t<6时,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等边三角形,∴不论t如何变化,△DEF始终为等边三角形;(2)如图②中,作AH⊥BC于H,则AH=AB•sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴抛物线开口向下,有最大值,∴当t=3时,△AEQ的面积最大为cm2,(3)如图③中,由(2)知,E点为BC的中点,线段EQ为△ABC的中位线,当AD为菱形的边时,可得P1(3,0),P3(6,3),当AD为对角线时,P2(0,3),综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3).【点睛】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.19、(1)证明见解析;(2).【解析】

先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.【详解】证明:,,,是的切线,,,.平分,,,;解:作于F,如图,

的直径长8,.,,,,在中,设,则,,即,解得,.故答案为(1)证明见解析;(2).【点睛】本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.20、35km【解析】试题分析:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.试题解析:如图,作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E处距离港口A有35km.21、(1)8m;(2)答案不唯一【解析】

(1)根据入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DCAB于点C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.22、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】

(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论