版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.一组数中,无理数的个数是()A.2 B.3 C.4 D.52.已知一个多边形的每个外角都要是60°,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形3.下列各点中,在函数y=-图象上的是()A. B. C. D.4.一元二次方程的根是()A. B. C., D.,5.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个 B.2个 C.3个 D.4个6.如图,两地被池塘隔开,小明先在直线外选一点,然后测量出,的中点,并测出的长为.由此,他可以知道、间的距离为()A. B. C. D.7.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75° B.45° C.60° D.15°8.后面的式子中(1);(2);(3);(4);(5);(6);二次根式的个数有().A.2个 B.3个 C.4个 D.5个9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.10.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是55,则图2中a的值为()A.30 B.5 C.7 D.35二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xOy中,有两点A(2,4),B(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为_____.12.已知为分式方程,有增根,则_____.13.2-1=_____________14.已知一个钝角的度数为,则x的取值范围是______15.如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=_____.16.写出一个经过点,且y随x的增大而减小的一次函数的关系式:______.17.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.18.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有_____个正方形.三、解答题(共66分)19.(10分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.20.(6分)如图所示,在直角坐标系xOy中,一次函数=x+b(≠0)的图象与反比例函数的图象交于A(1,4),B(2,m)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)当x的取值范围是时,x+b>(直接将结果填在横线上)21.(6分)某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定,现从两家提供的样品中各抽取了6件进行检查,超过标准质量部分记为正数,不足部分记为负数,若该皮具的标准质量为500克,测得它们质量如下(单位:g)厂家超过标准质量的部分甲﹣300120乙﹣21﹣1011(1)分别计算甲、乙两厂抽样检测的皮具总质量各是多少克?(2)通过计算,你认为哪一家生产皮具的质量比较稳定?22.(8分)已知关于x的一元二次方程x2﹣(n+3)x+3n=1.求证:此方程总有两个实数根.23.(8分)在中,,,点是的中点,点是射线上一点,于点,且,连接,作于点,交直线于点.(1)如图(1),当点在线段上时,判断和的数量关系,并加以证明;(2)如图(2),当点在线段的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当和面积相等时,点与点之间的距离;如果不成立,请说明理由.24.(8分)某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中,他俩的成绩分别如下表,请根据表中数据解答下列问题:第1次第2次第3次第4次第5次平均分众数中位数方差甲60分75分100分90分75分80分75分75分190乙70分90分100分80分80分80分80分(1)把表格补充完整:(2)在这五次测试中,成绩比较稳定的同学是多少;若将80分以上(含80分)的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.25.(10分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)求证:四边形ACFD为平行四边形.26.(10分)如图,在平行四边形中,已知点在上,点在上,且.求证:.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
先将二次根式换成最简二次根式,再根据无限不循环小数是无理数的定义进行判断选择即可.【详解】因为,所以是无理数,共有3个,故答案选B.【点睛】本题考查的是无理数的定义,能够将二次根式化简是解题的关键.2、B【解析】
根据多边形的边数等于310°除以每一个外角的度数列式计算即可【详解】310°÷10°=1.故这个多边形是六边形.故选:B.【点睛】此题考查多边形内角与外角,难度不大3、C【解析】
把各点代入解析式即可判断.【详解】A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.故选C.【点睛】此题主要考查反比例函数的图像,解题的关键是将各点代入解析式.4、D【解析】
利用因式分解法解方程.【详解】∵x(x+3)=0,∴x=0,或x+3=0,解得x=0或x=−3.故选D.【点睛】本题主要考查解一元二次方程-因式分解法,熟悉掌握是关键.5、B【解析】
根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.6、D【解析】
根据三角形中位线定理解答.【详解】解:∵点M,N分别是AC,BC的中点,
∴AB=2MN=13(m),
故选:C.【点睛】本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是关键.7、C【解析】
首先根据题意寻找旋转后的重合点,根据重合点来找到旋转角.【详解】根据题意△ABC是等边三角形可得B点旋转后的点为C旋转角为故选C.【点睛】本题主要考查旋转角的计算,关键在于根据重合点来确定旋转角.8、B【解析】
根据二次根式的定义:一般地,我们把形如的式子叫做二次根式可得答案.【详解】解:根据二次根式的定义:(1);(3);(5)是二次根式,而(2)中被开方数-3<0,不是二次根式,(4)是立方根,不是二次根式,(6)中因,故被开方数,不是二次根式;综上只有3个是二次根式;故选B.【点睛】此题主要考查了二次根式定义,关键是掌握被开方数是非负数.9、B【解析】∵y轴表示当天爷爷离家的距离,X轴表示时间又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∴选项B中的图形满足条件.故选B.10、A【解析】
根据题意可知AB=AC,点Q表示点K在BC中点,由△ABC的面积是15,得出BC的值,再利用勾股定理即可解答.【详解】由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为1.所以12BC×1=15,解得BC=25所以AB=52故选:A.【点睛】此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.二、填空题(每小题3分,共24分)11、(1,2)【解析】
根据位似变换的性质,坐标与图形性质计算.【详解】点B的坐标为(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B',B'的坐标为(2,0),
∴以原点O为位似中心,把△OAB缩小12,得到△OA'B',
∵点A的坐标为(2,4),
∴点A'的坐标为(2×12,4×12),即(1,2),
故答案是:(1【点睛】考查的是位似变换,坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12、【解析】
去分母得,根据有增根即可求出k的值.【详解】去分母得,,当时,为增根,故答案为:1.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.13、【解析】
根据负指数幂的运算法则即可解答.【详解】原式=2-1=.【点睛】本题考查了负指数幂的运算法则,牢记负指数幂的运算法则是解答本题的关键.14、【解析】
试题分析:根据钝角的范围即可得到关于x的不等式组,解出即可求得结果.由题意得,解得.故答案为【点睛】考点:不等式组的应用点评:本题属于基础应用题,只需学生熟练掌握钝角的范围和一元一次不等式组的解法,即可完成.15、.【解析】
如图,作AH⊥BC于H.根据平行四边形ABCD的面积=BC•AH,即可解决问题.【详解】如图,作AH⊥BC于H.在Rt△ABH中,∵AB=4,∠B=60°,∠AHB=90°,∴AH=AB•sin60°=2,∴平行四边形ABCD的面积=BC•AH=16.故答案为:16.【点睛】本题考查了平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.16、y=-x-1【解析】
可设,由增减性可取,再把点的坐标代入可求得答案.【详解】设一次函数解析式为,随的增大而减小,,故可取,解析式为,函数图象过点,,解得,.故答案为:(注:答案不唯一,只需满足,且经过的一次函数即可).【点睛】本题有要考查一次函数的性质,掌握“在中,当时随的增大而增大,当时随的增大而减小”是解题的关键.17、1.【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=1.故答案为1.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.18、1【解析】
观察图形发现:第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…由此得出第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1)个正方形从而得到答案.【详解】解:∵第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…∴第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1),∴第4幅图中有12+22+32+42=1个正方形.故答案为1.【点睛】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.三、解答题(共66分)19、(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1),;(1)3;(3)x<0或【解析】
(1)把(1,4)代入y=,易求k1,从而可求反比例函数解析式,再把B点坐标代入反比例函数解析式,易求m,然后把A、B两点坐标代入一次函数解析式,易得关于k1、b的二元一次方程,解可求k1、b,从而可求一次函数解析式;
(1)设直线AB与x轴交于点C,再根据一次函数解析式,可求C点坐标,再根据分割法可求△AOB的面积;
(3)观察可知当x<0或1<x<3时,k1x+b>.【详解】解:(1)把(1,4)代入y=,得
k1=4,
∴反比例函数的解析式是y=,
当x=1时,y=,
∴m=1,
把(1,4)、(1,1)代入y1=k1x+b中,得
,
解得,
∴一次函数的解析式是y=-1x+6;(1)设直线AB与x轴交于点C,
当y=0时,x=3,
故C点坐标是(3,0),
∴S△AOB=S△AOC-S△BOC=×3×4-×3×1=6-3=3;(3)在第一象限,当1<x<1时,k1x+b>;
还可观察可知,当x<0时,k1x+b>.
∴x<0或1<x<1.【点睛】本题考查了待定系数法求函数解析式、一次函数与反比例函数的交点问题,解题的关键是先求出反比例函数,进而求B点坐标,然后求出一次函数的解析式.21、(1)甲厂抽样检测的皮具总质量为3000克,乙厂抽样检测的皮具总质量为3000克;(2)乙公司生产皮具的质量比较稳定.【解析】
(1)求出记录的质量总和,再加上标准质量即可;(2)以标准质量为基准,根据方差的定义求出两公司的方差,相比即可.【详解】解:(1)甲厂抽样检测的皮具总质量为500×6+(﹣3+0+0+1+2+0)=3000(克),乙厂抽样检测的皮具总质量为500×6+(﹣2+1﹣1+0+1+1)=3000(克);(2)∵=×(﹣3+0+0+1+2+0)=0,∴=×[(﹣3﹣0)2+(0﹣0)2×3+(1﹣0)2+(2﹣0)2]≈2.33,∵=×(﹣2+1﹣1+0+1+1)=0,∴=×[(﹣2﹣0)2+3×(1﹣0)2+(﹣1﹣0)2+(0﹣0)2]≈1.33,∵<,∴乙公司生产皮具的质量比较稳定.【点睛】本题主要考查了方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.22、见解析.【解析】
利用根的判别式△≥1时,进行计算即可【详解】△=,所以,方程总有两个实数根.【点睛】此题考查根的判别式,掌握运算法则是解题关键23、(1),证明见解析;(2)依然成立,点与点之间的距离为.理由见解析.【解析】
(1)做辅助线,通过已知条件证得与是等腰直角三角形.证出,利用全等的性质即可得到.(2)设AH,DF交于点G,可根据ASA证明△FCE≌△HFG,从而得到,当和均为等腰直角三角形当他们面积相等时,.利用勾股定理可以求DE、CE的长,即可求出CE的长,即可求得点与点之间的距离.【详解】(1)证明:延长交于点∵在中,,,∴∵于点,且,∴,与是等腰直角三角形.∴,,,∴,∵点是的中点,∴,∴∴∵于点,∴,∴∴∴∴;(2)依然成立理由:设AH,DF交于点G,由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.由(1)可知和均为等腰直角三角形当他们面积相等时,.∴∴∴点与点之间的距离为.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.24、(1)84,104;(2)乙;40%,80%;(3)我认为选乙参加比较合适.【解析】
(1)根据乙五次成绩,先求平均数,再求方差即可,(2)方差小代表成绩稳定;优秀率表示超过80分次数的多少,次数越多越优秀,(3)选择成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工业用地租赁协议
- 2024年培训学校教员聘用合同版
- 2024个人借款展期借款合同
- 2024年度公共停车场车位使用权转让协议
- 工业智能操作系统白皮书(2024版)
- 2024年创业团队股东退股协议样本版B版
- 2024年债务变更及转让协议范本版B版
- 2024年个人专属协议授权委托模板版B版
- 2024年度商业招商教学辅导合同样本版
- 2024年度土地产权确认与配额协议
- 基本消防知识考试题库200题(通用版)
- 3.1细胞膜的结构和功能用
- AQL抽样标准表完整
- 工程结算审核服务方案技术标
- 海南师范大学《大学英语》2019-2020学年期末试卷
- 清水水电站工程防洪分析
- 申请复制庭审录音录像申请书范本
- 2023安徽社区《网格员》押题卷
- 四年级数学上册总复习(解决问题)
- 深度学习视域下翻转课堂教学理论与实践研究-以小学语文教学为例
- 武田人才留享计划
评论
0/150
提交评论