




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知△ABC的三边长分别为6,8,10,则△ABC的形状是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.锐角三角形或钝角三角形2.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是(
)A.3 B. C.5 D.3.如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3 B.4 C.5 D.64.方程的解是()A. B., C., D.,5.计算:()A.5 B.7 C.-5 D.-76.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时点P的坐标是()A.(2016,0) B.(2017,1) C.(2017,-1) D.(2018,0)7.如果把分式中的x和y都扩大2倍,那么分式的值()A.扩大为原来的4倍 B.扩大为原来的2倍C.不变 D.缩小为原来的倍8.使下列式子有意义的实数x的取值都满足的式子的是()A. B. C. D.9.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A. B. C.2 D.10.如图,▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,OE⊥BD交BC于点E,CD=1,则CE的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠AOB=45°,PC=6,则PD的长为_____.12.如图,在△ABC中,AB=5,AC=6,BC=7,点D、E、F分别是边AB、AC、BC的中点,连接DE、DF、EF,则△DEF的周长是_____________。13.若个数,,,的中位数为,则_______.14.如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.15.过边形的一个顶点共有2条对角线,则该边形的内角和是__度.16.方程的解是________.17.当x=__________时,分式无意义.18.在某校举行的“汉字听写”大赛中,六名学生听写汉字正确的个数分别为:35,31,32,31,35,31,则这组数据的众数是_____.三、解答题(共66分)19.(10分)化简或计算:(1)()2•(﹣)(2)÷﹣×20.(6分)在RtΔABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF//BC交BE的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.21.(6分)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.22.(8分)在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60km/h(即),并在离该公路100m处设置了一个监测点A.在如图的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.(1)求点B和点C的坐标;(2)一辆汽车从点B匀速行驶到点C所用的时间是15s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:≈1.7)23.(8分)如图,四边形ABCD是平行四边形,EB⊥BC于B,ED⊥CD于D,BE、DE相交于点E,若∠E=62º,求∠A的度数.24.(8分)解方程:x(x﹣3)=1.25.(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?26.(10分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?
A型智能手表
B型智能手表
进价
130元/只
150元/只
售价
今年的售价
230元/只
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据勾股定理的逆定理进行判断即可.【详解】解:∵62+82=102,
∴根据勾股定理的逆定理,三角形是直角三角形,
故选:C.【点睛】本题考查了直角三角形的判定,关键是根据勾股定理的逆定理解答.2、C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=11,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=11,即3x+12y=11,x+4y=1,所以S2=x+4y=1,故答案为1.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S1,S2,S3,再利用S1+S2+S3=11求解是解决问题的关键.3、D【解析】
连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【详解】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,故选D.【点睛】本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难题型.4、C【解析】
把方程两边的看作一个整体,进行移项、合并同类项的化简,即可通过因式分解法求得一元二次方程的解.【详解】方程经移项、合并同类项后,化简可得:,即,则解为,故选C.【点睛】本题考查一元二次方程的化简求解,要掌握因式分解法.5、A【解析】
先利用二次根式的性质进行化简,然后再进行减法运算即可.【详解】=6-1=5,故选A.【点睛】本题考查了二次根式的化简,熟练掌握是解题的关键.6、B【解析】试题解析:以时间为点P的下标.
观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,
∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).
∵2017=504×4+1,
∴第2017秒时,点P的坐标为(2017,1).故选B.7、B【解析】
依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可;【详解】解:分别用2x和2y去代换原分式中的x和y得,,可见新分式扩大为原来的2倍,故选B.【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.8、D【解析】
根据二次根式有意义的条件依次判断各项即可.【详解】选项A,,-x≥0且,解得x≤0且x≠-1,选项A错误;选项B,,x+1>0,解得x>-1,选项B错误;选项C,,x+1≥0且1-x≥0,解得-1≤x≤1,选项C错误;选项D,,x-1≥0且1-x≠0,解得x>1,选项D正确.故选D.【点睛】本题考查了二次根式及分式有意义的条件,熟知二次根式及分式有意义的条件是解决问题的关键.9、A【解析】试题分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=.故选A.考点:1.勾股定理2.含30度角的直角三角形.10、D【解析】
首先证明四边形ABCD是矩形,在RT△BOE中,易知BE=2EO,只要证明EO=EC即可.【详解】∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵△ABO是等边三角形,∴AO=BO=AB,∴AO=OC=BO=OD,∴AC=BD,∴四边形ABCD是矩形.∴OB=OC,∠ABC=90°,∵△ABO是等边三角形,∴∠ABO=60°,∴∠OBC=∠OCB=30°,∠BOC=120°,∵BO⊥OE,∴∠BOE=90°,∠EOC=30°,∴∠EOC=∠ECO,∴EO=EC,∴BE=2EO=2CE,∵CD=1,∴BC=CD=,∴EC=BC=,故选:D.【点睛】本题考查平行四边形的性质、矩形的判定、等边三角形的性质、等腰三角形的判定等知识,解题的关键是直角三角形30度角的性质的应用,属于中考常考题型.二、填空题(每小题3分,共24分)11、3【解析】
过P作PE⊥OB,根据角平分线的定义和平行线的性质易证得△PCE是等腰直角三角形,得出PE=3,根据角平分线的性质即可证得PD=PE=3.【详解】解:过P作PE⊥OB,
∵∠AOP=∠BOP,∠AOB=45°,
∴∠AOP=∠BOP=22.5°,
∵PC∥OA,
∴∠OPC=∠AOP=22.5°,
∴∠PCE=45°,
∴△PCE是等腰直角三角形,,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
∴PD=PE=.【点睛】本题考查了角平分线的性质,平行线的性质,等腰直角三角形的判定和性质,求得∠PCE=45°是解题的关键.12、9【解析】
根据三角形中位线定理求出DE、DF、EF即可解决问题.【详解】解:∵点D、E、F分别是边AB、AC、BC的中点∴∴∴△DEF的周长是:【点睛】本题考查了三角形中位线,熟练掌握三角形中位线定理是解题的关键.13、【解析】
根据中位数的概念求解.【详解】解:∵5,x,8,10的中位数为7,∴,解得:x=1.故答案为:1.【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14、b>c>a.【解析】
由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.【点睛】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.15、1【解析】
n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条;多边形内角和定理:(n-2)•180(n≥3)且n为整数).【详解】解:过n边形的一个顶点共有2条对角线,则n=2+3=5,该n边形的内角和是(5-2)×180°=1°,故答案为:1.【点睛】本题考查了多边形内角和,熟记多边形内角和定理:(n-2)•180(n≥3)且n为整数)是解题的关键.16、【解析】
推出方程x-3=0或x=0,求出方程的解即可.【详解】解:∵,即x=0或x+3=0,∴方程的解为.【点睛】本题主要考查对解一元二次方程,解一元一次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.17、1【解析】
根据分式无意义的条件:分母等于0,进行计算即可.【详解】∵分式无意义,∴,∴.故答案为:1.【点睛】本题考查分式有无意义的条件,明确“分母等于0时,分式无意义;分母不等于0时,分式有意义”是解题的关键.18、1【解析】
利用众数的定义求解.【详解】解:这组数据的众数为1.
故答案为1.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.三、解答题(共66分)19、(1)﹣;(1)1﹣1.【解析】
(1)先算乘方,再算乘法即可;(1)先算除法和乘法,再化简即可.【详解】(1)原式==﹣;(1)原式=﹣=﹣=1﹣1.【点睛】本题考查了分式的混合运算,二次根式的混合运算,熟练掌握分式和二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.20、(1)见解析;(2)见解析【解析】
(1)根据已知条件易证ΔAFE≅ΔDBE,利用全等三角形的性质即可证得结论;(2)根据(1)的结论,结合已知条件证得AF=CD,利用一组对边平行且相等的四边形为平行四边形,证得四边形ADCF是平行四边形,再利用直角三角形斜边的中线等于斜边的一半证得AD=12BC=DC,由一组邻边相等的平行四边形为菱形即可判定四边形【详解】(1)证明:如图,∵AF//BC,∴∠AFE=∠DBE,∵ΔABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD,在ΔAFE和ΔDBE中,∠AFE=∠DBE∠FEA=∠BED∴ΔAFE≅ΔDBE;∴AF=BD.(2)由(1)知,AF=BD∵BD=CD,∴AF=CD,∵AF//BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=1∴四边形ADCF是菱形.【点睛】本题考查全等三角形的判定与性质、平行四边形的判定、菱形的判定及直角三角形斜边的中线等于斜边的一半的性质,熟练运用相关知识是解决问题的关键.21、(1)证明见解析;(2)证明见解析;(3)∠GFH=100°.【解析】
(1)由中点性质及AB=AC,得到BD=EC,再由中位线性质证明FG∥BD,GF=BD,FH∥EC,FH=EC,从而得到FG=FH;(2)由(1)FG∥BD,FH∥EC,再由∠A=90°,可证FG⊥FH;(3)由(1)FG∥BD,∠A=80°,可求得∠FKC,再由FH∥EC,可求得∠GFH的度数.【详解】(1)∵AB=AC,点D,E分别是边AB,AC的中点∴BD=EC∵点F,G,H分别为BE,DE,BC的中点∴FG∥BD,GF=BDFH∥EC,FH=EC∴FG=FH;(2)由(1)FG∥BD又∵∠A=90°∴FG⊥AC∵FH∥EC∴FG⊥FH;(3)延长FG交AC于点K,∵FG∥BD,∠A=80°∴∠FKC=∠A=80°∵FH∥EC∴∠GFH=180°﹣∠FKC=100°【点睛】本题是几何问题,考查了三角形中位线的有关性质,解答时应根据题意找到相应三角形的中位线.22、见解析【解析】试题分析:根据方位角的概念,得出∠BAO=60°,∠CAO=45°,由∠BAO=60°可得∠ABO=30°,进而可得AB的值,然后在Rt△ABO中由勾股定理可求出OB的值,(2)判断是否超速就是求BC的长,然后比较即可.解:(1)在Rt△AOB中,∵∠BAO=60°,∴∠ABO=30°,∴OA=AB.∵OA=100m,∴AB=200m.由勾股定理,得OB==100(m).在Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.∴OC=OA=100m.∴B(-100,0),C(100,0).(2)∵BC=BO+CO=(100+100)m,≈18>,∴这辆汽车超速了.23、118°【解析】
根据EB⊥BC,ED⊥CD,可得∠EBC=90°,∠EDC=90°,然后根据四边形的内角和为360°,∠E=62°,求得∠C的度数,然后根据平行四边形的性质得出∠A=∠C,继而求得∠A的度数.【详解】解:∵EB⊥BC,ED⊥CD.∴∠EBC=∠EDC=90°∵∠E=62°∴∠C=360°-∠EBC-∠EDC-∠E=118°∵四边形ABCD为平行四边形∴∠A=∠C=118°【点睛】本题考查了平行四边形的性质及多边形的内角和等知识,熟练掌握四边形的内角和为360°与平行四边形对角相等是解题的关键.24、x2=2,x2=﹣2【解析】
把方程化成一般形式,用十字相乘法因式分解求出方程的根.【详解】解:x2﹣3x﹣2=0(x﹣2)(x+2)=0x﹣2=0或x+2=0∴x2=2,x2=﹣2.【点睛】本题考查了一元二次方程的解法,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食用玫瑰收购合同范本
- 工厂管道改造合同范本
- 聘任制合同范本
- 水刀订购合同范本
- 入围方式、备考建议2024强基计划备考必看
- 品牌西装租借合同范本
- 极简学术答辩模板-1
- 2025年标准多人劳动合同模板
- 2025工程承包合同(承包方)范本
- 2025温室用地租赁合同
- 2025年兰州粮油集团有限公司招聘笔试参考题库含答案解析
- 语文新课标“整本书阅读”深度解读及案例
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
- 口腔医学数字技术
- 全国高中语文优质课一等奖《雷雨》 课件
- 高中生社会实践证明
- 常用平面轴规格表
- “三会一课”记录表
- 分部分项工程验收记录表(共19页)
- 大学物理实验坐标纸(共1页)
- 年产10万吨年聚丙烯聚合工段工艺设计
评论
0/150
提交评论