版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.人体血液中,红细胞的直径约为0.0000077m.用科学记数法表示0.0000077m是()A.0.77×10﹣5 B.7.7×10﹣5 C.7.7×10﹣6 D.77×10﹣72.下列说法不正确的是(
)A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等3.如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100° B.105° C.110° D.115°4.若,若,则的度数是()A. B. C. D.5.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同若设乙工人每小时搬运x件电子产品,可列方程为A. B. C. D.6.如图,在平面直角坐标系xOy中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,4),反比例函数y的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是()A. B. C.﹣12 D.7.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相平分且垂直的四边形是菱形C.一组对边平行另外一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形8.如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.179.已知▱ABCD的周长为50cm,△ABC的周长为35cm,则对角线AC的长为()A.5cm B.10cm C.15cm D.20cm10.如图所示,直角三角形ABO的周长为100,在其内部有个小直角三角形周长之和为()A.90 B.100 C.110 D.12011.八年级甲、乙、丙三个班的学生人数相同,上期期末体育成绩的平均分相同,三个班上期期末体育成绩的方差分别是:S甲2=6.4,A.甲班 B.乙班 C.丙班 D.上哪个班都一样12.如图,在四边形中,,点分别为线段上的动点(含端点,但点不与点重合),点分别为的中点,则长度的最大值为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.14.如果将直线平移,使其经过点,那么平移后所得直线的表达式是__________.15.如图,正方形ABCD的面积等于25cm2,正方形DEFG的面积等于9cm2,则阴影部分的面积S=______cm2.16.若函数是正比例函数,则常数m的值是。17.一个多边形的各内角都相等,且内外角之差的绝对值为60°,则边数为__________.18.因式分解:_________三、解答题(共78分)19.(8分)一家公司名员工的月薪(单位:元)是(1)计算这组数据的平均数、中位数和众数;(2)解释本题中平均数、中位数和众数的意义。20.(8分)如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.21.(8分)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为____________;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.22.(10分)如图,在△ABC中,AB=10,AD平分∠BAC交BC于点D,若AD=8,BD=6,求AC的长.23.(10分)如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1;(2)以点A为对称中心,请画出△AOB关于点A成中心对称的△AO2B2,并写点B2的坐标;(1)以原点O为旋转中心,请画出把△AOB按顺时针旋转90°的图形△A2OB1.24.(10分)(1)化简求值:,其中.(2)解不等式组:,并把它的解集在数轴上表示出来.25.(12分)甲、乙两家文化用品商场平时以同样价格出售相同的商品.六一期间两家商场都让利酬宾,其中甲商场所有商品一律按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)分别写出两家商场购物金额(元)与商品原价(元)的函数解析式;(2)在如图所示的直角坐标系中画出(1)中函数的图象;(3)六一期间如何选择这两家商场购物更省钱?26.七年级某班体育委员统计了全班同学60秒垫排球次数,并列出下列频数分布表:次数0≤x<1010≤x<2020≤x<3030≤x<4040≤x<5050≤x<60频数14211554(1)全班共有名同学;(2)垫排球次数x在20≤x<40范围的同学有名,占全班人数的%;(3)若使垫排球次数x在20≤x<40范围的同学到九年级毕业时占全班人数的87.12%,则八、九年级平均每年的垫排球次数增长率为多少?
参考答案一、选择题(每题4分,共48分)1、C【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:故选C.2、D【解析】A选项:平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;
B选项:平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;C选项:平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;
D选项:平行四边形的对角相等,邻角互补,故本选项错误;故选D.3、D【解析】
根据平行四边形对角相等,邻角互补即可求解.【详解】解:在▱ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故选D.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键.4、A【解析】
根据相似三角形的对应角相等可得∠D=∠A.【详解】∵△ABC∽△DEF,∠A=50°,
∴∠D=∠A=50°.
故选:A.【点睛】此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.5、C【解析】
乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,根据甲的工效乙的工效,列出方程即可.【详解】乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,依题意得:,故选C.【点睛】本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键
错因分析:中等题.选错的原因是:未能读懂题意导致不能列出正确的等量关系.
6、B【解析】
先利用勾股定理计算出OC=5,再利用菱形的性质得到AC=OB=OC=5,AC∥OB,则B(-5,0),A(-8,4),接着利用待定系数法确定直线OA的解析式为y=-x,则可确定D(-5,),然后把D点坐标代入y=中可得到k的值.【详解】∵C(−3,4),
∴OC==5,
∵四边形OBAC为菱形,
∴AC=OB=OC=5,AC∥OB,
∴B(−5,0),A(−8,4),
设直线OA的解析式为y=mx,
把A(−8,4)代入得−8m=4,解得m=−,
∴直线OA的解析式为y=-x,
当x=−5时,y=-x=,则D(−5,),
把D(−5,)代入y=,
∴k=−=.
故选B.【点睛】本题考查反比例函数图象上点的坐标特征和菱形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和菱形的性质.7、C【解析】
根据平行四边形、菱形和正方形的判定方法进行分析可得.【详解】A.两组对边分别平行的四边形是平行四边形,正确;B.对角线互相平分且垂直的四边形是菱形,正确;C.一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故错误;D.有一组邻边相等的矩形是正方形,正确.故选C.8、C【解析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=1,求出即可:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形.∴AC=AB=1.∴正方形ACEF的周长是AC+CE+EF+AF=1×1=2.故选C.9、B【解析】
根据平行四边形的性质,首先计算AB+CB的长度,再结合三角形的周长,进而计算对角线AC的长.【详解】解:∵平行四边形的对边相等,∴AB+CB=25,而△ABC的周长为35cm,∴AC=35﹣AB﹣CB=10cm.故选:B.【点睛】本题主要考查对角线的长度的计算,结合平行四边形的性质和三角形的周长可得对角线的长度.10、B【解析】过小直角三角形的直角定点作AO,BO的平行线,则四边形DEFG和四边形EFOH是矩形.∴DE=GF,DG=EF=OH,∴小直角三角形的与AO平行的边的和等于AO,与BO平行的边的和等于BO.∴小直角三角形的周长等于直角△ABC的周长.∴这n个小直角三角形的周长为1.故选B.11、B【解析】
先比较三个班方差的大小,然后根据方差的意义进行判断.【详解】解:∵S2甲=6.4,S2乙=5.6,S2丙=7.1,∴S2乙<S2甲<S2丙,∴乙班成绩最稳定,杜老师更喜欢上课的班是乙班.故选:B.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12、B【解析】
连接BD、ND,由勾股定理得可得BD=5,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.【详解】连接BD、ND,由勾股定理得,BD==5∵点E、F分别为DM、MN的中点,∴EF=DN,当DN最长时,EF长度的最大,∴当点N与点B重合时,DN最长,∴EF长度的最大值为BD=2.5,故选B.【点睛】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.二、填空题(每题4分,共24分)13、1【解析】
想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.【详解】解:∵四边形AEFG是正方形,
∴∠AEF=90°,
∵∠CEF=15°,
∴∠AEB=180°-90°-15°=75°,
∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=1°
故答案为:1.【点睛】本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.14、【解析】
根据平移不改变k的值可设平移后直线的解析式为y=x+b,然后将点(0,2)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=x+b,把(0,2)代入直线解析式得解得
b=2,所以平移后直线的解析式为.【点睛】本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.15、【解析】
由题意可知:已知正方形ABCD面积等于25cm2,边长是5,正方形DEFG的面积等于9cm2,边长是3,阴影部分是正方形ABCD面积的一半,加上正方形DEFG的面积,减去底为5+3=8cm,高为3cm的三角形的面积,由此列式得出答案即可.【详解】解:∵正方形ABCD面积等于25cm2,正方形DEFG的面积等于9cm2,
∴正方形ABCD边长是5,正方形DEFG的边长是3,
∴阴影部分的面积S=25×+9-×(5+3)×3
=+-
=.故答案为:.【点睛】本题考查正方形的性质,整式的混合运算,掌握组合图形面积之间的计算关系是解决问题的关键.16、-3【解析】根据函数是正比例函数知x的幂是一次得,m=±3,m=3不符合题意,舍去得m=-3.17、3或1【解析】
分别表示多边形的每一个内角及与内角相邻的外角,根据题意列方程求解即可.【详解】解:因为:多边形的内角和为,又每个内角都相等,所以:多边形的每个内角为,而多边形的外角和为,由多边形的每个内角都相等,则每个外角也都相等,所以多边形的每个外角为,所以,所以,所以或解得:,经检验符合题意.故答案为:3或1.【点睛】本题考查的是多边形的内角和与外角和,多边形的一个内角与相邻的外角互补,掌握相关的性质是解题的关键.18、x(x-9)【解析】分析:直接提取公因式x,进而分解因式即可.详解:x2﹣9x=x(x﹣9).故答案为:x(x﹣9).点睛:本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.三、解答题(共78分)19、(1)平均数,中位数,众数;(2)员工的月平均工资为,约有一半员工的工资在以下,月薪为元的员工最多【解析】
(1)根据平均数、中位数和众数的定义及计算公式分别进行解答,即可求出答案;(2)根据平均数、中位数和众数的意义分别进行解答即可.【详解】(1)这组数据的平均数是:(8000+6000+2550+1700+2550+4599+4200+2500+5100+2500+4400+25000+12400+2500)=6003.5(元);排序后,中位数是第7和8个数的平均数,即=4300(元);∵2550出现了3次,出现的次数最多,∴众数是2550;(2)员工的月平均工资为6003.5,约有一半的员工的工资在4300以下,月薪为2550元的员工最多.【点睛】此题考查了平均数、中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数;平均数是指在一组数据中所有数据之和再除以数据的个数.20、(1)AP+PQ的最小值为1;(2)存在,M点坐标为(﹣12,﹣1)或(12,8).【解析】
(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=1,C点坐标为(1,1)DB=∠CEB=90,可知B、C、D、E四点共圆,由等腰直角△ABC可知∠CBD=15,同弧所对圆周角相等可知∠CED=15,所以∠OEF=15,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.(2)由直线l与直线AC成15可知∠AMN=15,由直线AC解析式可设M点坐标为(x,),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.【详解】解:(1)过A点作AK⊥CE,在等腰直角△ABC中,∠ACB=90,AC=BC,∵CE⊥x轴,∴∠ACK+∠ECB=90,∠ECB+∠CBE=90,∴∠ACK=∠CBE在△AKC和△CEB中,,△AKC≌△CEB(AAS)∴AK=CE,CK=BE,∵四边形AOEK是矩形,∴AO=EK=BE,由直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,可知A点坐标为(0,2),B(6,0)∴E点坐标为(1,0),C点坐标为(1,1),∵∠CDB=∠CEB=90,∴B、C、D、E四点共圆,∵,∠CBA=15,∴∠CED=15,∴FE平分∠CEO,过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.∴PH=PQ,∵PA+PQ=PA+PH≥AK=OE,∴OE=1,∴AP+PQ≥1,∴AP+PQ的最小值为1.(2)∵A点坐标为(0,2),C点坐标为(1,1),设直线AC解析式为:y=kx+b把(0,2),(1,1)代入得解得∴直线AC解析式为:y=,设M点坐标为(x,),N坐标为(0,y).∵MN∥AB,∠CAB=15,∴∠CMN=15,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS=NR.∴,解得:,∴M点坐标为(﹣12,﹣1)Ⅱ.如解图2﹣2,∠MNC=90,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴,解得:,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣1)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.21、(1)(2)证明见解析(3).【解析】
(1)连接AC,根据三角形中线把三角形分成两个面积相等的三角形进行解答即可得;(2)连接EF,根据三角形中位线定理可得到BD与GH平行且相等,由此即可得证;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,通过证明△BPE≌△CQE可得BP=CQ,BP//CQ,同理:CO=ND,CO//ND,从而可得Q、C、O三点共线,继而通过证明△APM∽△AQC,可得PM:CQ=AM:AC,同理:MN:CO=AM:AC,即可得答案.【详解】(1)如图,连接AC,则有S△ABC+S△ACD=S四边形ABCD=5,∵E、F分别为BC、CD中点,∴S△AEC=S△ABC,S△AFC=S△ADC,∴S四边形AECF=S△AEC+S△AFC=S△ABC+S△ADC=S四边形ABCD=,故答案为:;(2)如图,连接EF,∵E、F分别是BC,CD的中点,∴EF∥BD,EF=BD.,∵EG=AE,FH=AF,∴EF∥GH,EF=GH.,∴BD∥GH,BD=GH.,∴四边形BGHD是平行四边形;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,在△BPE和△CQE中,∴△BPE≌△CQE(SAS),∴BP=CQ,∠PBE=∠QCE,∴BP//CQ,同理:CO=ND,CO//ND,∴Q、C、O三点共线,∴BD//OQ,∴△APM∽△AQC,∴PM:CQ=AM:AC,同理:MN:CO=AM:AC,∴.【点睛】本题考查了三角形中线的性质、三角形中位线定理、平行四边形的判定、全等三角形的判定与性质、相似三角形的判定与性质等,综合性较强,熟练掌握相关知识、正确添加辅助线是解题的关键.22、AC=1【解析】
首先利用勾股定理的逆定理证明△ADB是直角三角形,再证明△ADB≌△ADC即可解决问题.【详解】在△ABD中,∵AD2+BD2=82+62=10,AB2=12=10,∴AD2+BD2=AB2,∴∠ADB=90°,∴∠ADB=∠ADC.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ADB和△ADC中,∵,∴△ADB≌△ADC(ASA),∴AC=AB=1.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理、等腰三角形的判定和性质等知识,解题的关键是勾股定理的逆定理的正确应用,属于中考常考题型.23、(1)如图所示:△A1O1B1为所求作的三角形;见解析;(2)如图所示:为所求作的三角形,见解析;(-1,4);(1)如图所示:为所求作的三角形;见解析.【解析】
(1)先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形;(2)关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分得特点,找到关键点的对应点,再顺次连接对应点即可得到平移后的图形;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即可得到B点的坐标;(1)先将A,B,O以原点O为旋转中心,顺时针旋转90°,得到对应点A2O,B1,最后顺次连接,顺次连接得出旋转后的图形.【详解】解:(1)如图所示:先将A,B,O三点向右平移4个单位长度,得到A1,O1,B1,最后顺次连接,即可得到:为所求作的三角形;(2)如图所示:先将A,B,O以点A为对称中心,得到A,O2,B2最后顺次连接,即可得到:为所求作的三角形,(-1,4);(1)如图所示:先将A,B,O以原点O为旋转中心,顺时针旋转90°,得到A2,O,B1,最后顺次连接,即可得到:为所求作的三角形;【点睛】本题主要考查了利用旋转变换,平移变换以及中心对称进行作图,解题时注意:关于x轴的对称点的横坐标不变,纵坐标互为相反数.关于y轴的对称点的横坐标互为相反数,纵坐标不变.24、(1),原式;(2).把它的解集在数轴上表示出来见解析.【解析】
(1)首先计算括号里面同分母的分式减法,然后除以括号外面的分式时,要乘以它的倒数,然后进行约分化简,代入求值;(2)分别解两个不等式,得到不等式组的解集,然后在数轴上表示解集即可.【详解】解:(1),把代入得:原式;(2),由①得,由②得,∴原不等式组的解集是.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省温州市新希望联盟2024-2025学年上学期八年级期中考试数学试卷
- 高中生物 第6章 第4节 细胞的癌变教案 新人教版必修1
- 广东省肇庆市高中数学 第二章 随机变量及其分布 2.4 正态分布教案 新人教A版选修2-3
- 八年级生物上册 7.19.2植物的生长发育教案 (新版)苏科版
- 2023六年级数学上册 五 完美的图形-圆信息窗3 圆的面积第1课时教案 青岛版六三制
- 湖南省醴陵市七年级地理上册 5.2 国家经济合作教案 (新版)湘教版
- 2023一年级数学上册 8 20以内的进位加法第6课时 解决问题(2)教案 新人教版
- 2024-2025学年高中历史 第3单元 古代中国的科学技术与文学艺术单元小结与测评教案 新人教版必修3
- 租用空调合同模板(2篇)
- 银行抵押物租赁合同(2篇)
- 2023年北京清华附中小升初考试数学真题及答案
- 希沃优化大师操作培训
- 氧气吸入法(课堂)课件
- 智慧城市综合管线信息化解决方案智慧管网智慧管线课件
- 务工证明excel模板
- 国际商法说课课件
- ICF言语嗓音障碍的评估与治疗课件
- 《中国当代文艺思潮》第二章主体论文艺思潮
- Honda-Special-Requirement本田的特殊要求-课件
- 2021-2022学年高中英语北师大版(2019)选择性必修第二册Units 4-6 全册单词表
- 道格拉斯公司销售数据决策案例分析课件
评论
0/150
提交评论