2022年大兴安岭市重点中学九年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2022年大兴安岭市重点中学九年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2022年大兴安岭市重点中学九年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2022年大兴安岭市重点中学九年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2022年大兴安岭市重点中学九年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知点,,是抛物线上的三点,则a,b,c的大小关系为()A. B. C. D.2.若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=10cm,则线段d的长为()A.2cm B.4cm C.5cm D.6cm3.已知:不在同一直线上的三点A,B,C求作:⊙O,使它经过点A,B,C作法:如图,(1)连接AB,作线段AB的垂直平分线DE;(2)连接BC,作线段BC的垂直平分线FG,交DE于点O;(3)以O为圆心,OB长为半径作⊙O.⊙O就是所求作的圆.根据以上作图过程及所作图形,下列结论中正确的是()A.连接AC,则点O是△ABC的内心 B.C.连接OA,OC,则OA,OC不是⊙的半径 D.若连接AC,则点O在线段AC的垂直平分线上4.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=35.已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个.A.1 B.2 C.3 D.46.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1 B.a=1 C.a=﹣1 D.a=±17.如图,圆锥的底面半径OB=6cm,高OC=8cm.则这个圆锥的侧面积是()A.30cm2 B.30πcm2 C.60πcm2 D.120cm28.如图,在△ABC中,E,G分别是AB,AC上的点,∠AEG=∠C,∠BAC的平分线AD交EG于点F,若,则()A. B. C. D.9.如图,已知点在反比例函数上,轴,垂足为点,且的面积为,则的值为()A. B. C. D.10.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为()A. B. C. D.11.如图所示,给出下列条件:①;②;③;④,其中单独能够判定的个数为()A. B. C. D.12.下列图形中为中心对称图形的是()A.等边三角形 B.平行四边形 C.抛物线 D.五角星二、填空题(每题4分,共24分)13.圆内接正六边形一边所对的圆周角的度数是__________.14.在一个不透明的袋中有2个红球,若干个白球,它们除颜色外其它都相同,若随机从袋中摸出一个球,摸到红球的概率是,则袋中有白球_________个.15.已知扇形半径为5cm,圆心角为60°,则该扇形的弧长为________cm.16.______.17.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.18.如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC的面积之比为.三、解答题(共78分)19.(8分)如图,是的直径,,为弧的中点,正方形绕点旋转与的两边分别交于、(点、与点、、均不重合),与分别交于、两点.(1)求证:为等腰直角三角形;(2)求证:;(3)连接,试探究:在正方形绕点旋转的过程中,的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.20.(8分)已知二次函数y=﹣2x2+bx+c的图象经过点(0,6)和(1,8).(1)求这个二次函数的解析式;(2)①当x在什么范围内时,y随x的增大而增大?②当x在什么范围内时,y>0?21.(8分)如图,在中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作于点H,连接DE交线段OA于点F.(1)试猜想直线DH与⊙O的位置关系,并说明理由;(2)若AE=AH,EF=4,求DF的值.22.(10分)已知y与x成反比例,则其函数图象与直线相交于一点A.(1)求反比例函数的表达式;(2)直接写出反比例函数图象与直线y=kx的另一个交点坐标;(3)写出反比例函数值不小于正比例函数值时的x的取值范围.23.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)24.(10分)如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.(1)求证:AC为⊙O切线.(2)若AB=5,DF=4,求⊙O半径长.25.(12分)如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转一定角度后能与△DFA重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm,求四边形ABCD的面积.26.如图,在边长为个单位长度的小正方形组成的网格中,给出了△ABC格点(顶点是网格线的交点).请在网格中画出△ABC以A为位似中心放大到原来的倍的格点△AB1C1,并写出△ABC与△AB1C1,的面积比(△ABC与△AB1C1,在点A的同一侧)

参考答案一、选择题(每题4分,共48分)1、D【分析】将A,B,C三点坐标分别代入抛物线,然后化简计算即可.【详解】解:∵点,,是抛物线上的三点,∴,,.∴故选:D.【点睛】本题考查二次函数图象上点的坐标,将点坐标分别代入关系式,正确运算,求出a,b,c是解题的关键.2、C【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=5cm,b=2.5cm,c=10cm,解得:d=5.故线段d的长为5cm.故选:C.【点睛】本题主要考查成比例线段,解题突破口是根据定义ad=cb,将a,b及c的值代入计算.3、D【分析】根据三角形的外心性质即可解题.【详解】A:连接AC,根据题意可知,点O是△ABC的外心,故A错误;B:根据题意无法证明,故B错误;C:连接OA,OC,则OA,OC是⊙的半径,故C错误D:若连接AC,则点O在线段AC的垂直平分线上,故D正确故答案为:D.【点睛】本题考查了三角形的确定即不在一条线上的三个点确定一个圆,这个圆是三角形的外接圆,o是三角形的外心.4、B【分析】把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.【详解】解:∵x1+1x﹣1=0,∴x1+1x+1=1,∴(x+1)1=1.故选B.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.5、C【分析】根据△ABC的面积可将高求出,即⊙O上的点到AB的距离为高长的点都符合题意.【详解】过圆心向弦AB作垂线,再连接半径.设△ABE的高为h,由可求.由圆的对称性可知,有两个点符合要求;又弦心距=.∵3+2=5,故将弦心距AB延长与⊙O相交,交点也符合要求,故符合要求的点有3个.故选C.考点:(1)垂径定理;(2)勾股定理.6、C【解析】根据一元一次方程的定义即可求出答案.【详解】由题意可知:,解得a=−1故选C.【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.7、C【详解】解:由勾股定理计算出圆锥的母线长=,圆锥漏斗的侧面积=.故选C.考点:圆锥的计算8、C【分析】根据两组对应角相等可判断△AEG∽△ACB,△AEF∽△ACD,再得出线段间的比例关系进行计算即可得出结果.【详解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,

∴△AEG∽△ACB.

∴.

∵∠EAF=∠CAD,∠AEF=∠C,

∴△AEF∽△ACD.

∴又,∴.∴故选C.【点睛】本题考查了相似三角形的判定,解答本题,要找到两组对应角相等,再利用相似的性质求线段的比值.9、C【分析】根据反比例函数中的比例系数k的几何意义即可得出答案.【详解】∵点在反比例函数,的面积为故选:C.【点睛】本题主要考查反比例函数中的比例系数k的几何意义,掌握反比例函数中的比例系数k的几何意义是解题的关键.10、B【分析】一边长为x米,则另外一边长为:8-x,根据它的面积为9平方米,即可列出方程式.【详解】一边长为x米,则另外一边长为:8-x,

由题意得:x(8-x)=9,

故选:B.【点睛】此题考查由实际问题抽相出一元二次方程,解题的关键读懂题意列出方程式.11、B【解析】由已知△ABC与△ABD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】解::①∵,∠A为公共角,∴;②∵,∠A为公共角,∴;③虽然,但∠A不是已知的比例线段的夹角,所以两个三角形不相似;④∵,∴,又∵∠A为公共角,∴.综上,单独能够判定的个数有3个,故选B.【点睛】本题考查了相似三角形的判定,属于基础题目,熟练掌握相似三角形的判定方法是解题的关键.12、B【分析】根据中心对称图形的概念求解.【详解】A、等边三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、抛物线不是中心对称图形,故本选项错误;D、五角星不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每题4分,共24分)13、30°或150°【分析】求出一条边所对的圆心角的度数,再根据圆周角和圆心角的关系解答.【详解】解:圆内接正六边形的边所对的圆心角360°÷6=60°,圆内接正六边形的一条边所对的弧可能是劣弧,也可能是优弧,

根据一条弧所对的圆周角等于它所对圆心角的一半,

所以圆内接正六边形的一条边所对的圆周角的度数是30°或150°,故答案为30°或150°.【点睛】本题考查学生对正多边形的概念掌握和计算的能力,涉及的知识点有正多边形的中心角、圆周角与圆心角的关系,属于基础题,要注意分两种情况讨论.14、6【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【详解】解:设袋中有x个球.根据题意得,解得x=8(个),8-2=6个,∴袋中有8个白球.故答案为:6.【点睛】此题考查了概率的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.16、【分析】将特殊角的三角函数值代入求解.【详解】解:,故答案为:.【点睛】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键.17、等【解析】根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,例如:.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.18、3:3.【解析】试题解析:∵E、F分别为AB、AC的中点,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴.考点:3.相似三角形的判定与性质;3.三角形中位线定理..三、解答题(共78分)19、(1)见解析;(2)见解析;(3)存在,【分析】(1)根据圆周角定理由AB是⊙O的直径得∠AMB=90°,由M是弧AB的中点得,于是可判断△AMB为等腰直角三角形;(2)连接OM,根据等腰直角三角形的性质得∠ABM=∠BAM=∠OMA=45°,OM⊥AB,MB=AB=6,再利用等角的余角相等得∠BOE=∠MOF,则可根据“SAS”判断△OBE≌△OMF,所以OE=OF;(3)易得△OEF为等腰直角三角形,则EF=OE,再由△OBE≌△OMF得BE=MF,所以△EFM的周长=EF+MF+ME=EF+MB=OE+4,根据垂线段最短得当OE⊥BM时,OE最小,此时OE=BM=2,进而求得△EFM的周长的最小值.【详解】(1)证明:是的直径,.是弧的中点,.,为等腰直角三角形.(2)证明:连接,由(1)得:.,.,,.在和中,,..(3)解:的周长有最小值.,为等腰直角三角形,,,.的周长.当时,最小,此时,的周长的最小值为.【点睛】本题考查了圆的综合题:熟练运用圆周角定理和等腰直角三角形的判定与性质,全等三角形的判定与性质是解题关键.20、(1)y=﹣2x2+4x+6;(2)①当x<1时,y随x的增大而增大;②当﹣1<x<3时,y>1【分析】(1)根据二次函数y=﹣2x2+bx+c的图象经过点(1,6)和(1,8),可以求得该抛物线的解析式;(2)①根据(1)求得函数解析式,将其化为顶点式,然后根据二次函数的性质即可得到x在什么范围内时,y随x的增大而增大;②根据(1)中的函数解析式可以得到x在什么范围内时,y>1.【详解】(1)∵二次函数y=﹣2x2+bx+c的图象经过点(1,6)和(1,8),∴,得,即该二次函数的解析式为y=﹣2x2+4x+6;(2)①∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴该函数的对称轴是x=1,函数图象开口向下,∴当x<1时,y随x的增大而增大;②当y=1时,1=﹣2x2+4x+6=﹣2(x﹣3)(x+1),解得,x1=3,x2=﹣1,∴当﹣1<x<3时,y>1.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据待定系数法求出二次函数的解析式..21、(1)直线与⊙O相切,理由见解析;(2)DF=6【分析】(1)连接,根据等腰三角形的性质可得,,可得,即可证明OD//AC,根据平行线的性质可得∠ODH=90°,即可的答案;(2)连接,由圆周角定理可得∠B=∠E,即可证明∠C=∠E,可得CD=DE,由AB是直径可得∠ADB=90°,根据等腰三角形“三线合一”的性质可得HE=CH,BD=CD,可得OD是△ABC的中位线,即可证明,根据相似三角形的性质即可得答案.【详解】(1)直线与⊙O相切,理由如下:如图,连接,∵,∴,∵,∴,∴,,∵,∴∠ODH=∠DHC=90°,∴DH是⊙O的切线.(2)如图,连接,∵∠B和∠E是所对的圆周角,∴,∵∴∴DC=DE∵,∴HE=CH设AE=AH=x,则,,∵是⊙O的直径,∴∠ADB=90°∵AB=AC∴BD=CD∴OD是的中位线,,,∴,∴,∵EF=4∴DF=6【点睛】本题考查等腰三角形的性质、圆周角定理、切线的判定与性质及相似三角形的判定与性质,经过半径的外端点并且垂直于这条半径的直线是圆的切线,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;熟练掌握相关性质及定理是解题关键.22、(1)y=;见详解;(2)另一个交点的坐标是;见详解;(1)0<x≤1或x≤-1.【分析】(1)根据题意可直接求出反比例函数表达式;(2)由(1)及一次函数表达式联立方程组求解即可;(1)根据反比例函数与一次函数的不等关系可直接求得.【详解】解:(1)设反比例函数表达式为,由题意得:把A代入得k=1,反比例函数的表达式为:y=;(2)由(1)得:把A代入,得k=1,,,解得,另一个交点的坐标是;(1)因为反比例函数值不小于正比例函数值,所以0<x≤1或x≤-1.【点睛】本题主要考查反比例函数与一次函数的综合,关键是根据题意得到两个函数表达式.23、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24、(1)见解析;(2)【分析】(1)连结OA,根据已知条件得到∠AOE=∠BEF,根据平行线的性质得到OA⊥AC,于是得到结论;(2)连接OF,设∠AFE=α,则∠BEF=2α,得到∠BAF=∠BEF=2α,得到∠OAF=∠BAO=α,求得∠AFO=∠OAF=α,根据全等三角形的性质得到AB=AF=5,由勾股定理得到AD==3,根据圆周角定理得到∠BAE=90°,根据相似三角形的性质即可得到结论.【详解】解(1)证明:连结OA,∴∠AOE=2∠F,∵∠BEF=2∠F,∴∠AOE=∠BEF,∴AO∥DF,∵DF⊥AC,∴OA⊥AC,∴AC为⊙O切线;(2)解:连接OF,∵∠BEF=2∠F,∴设∠AFE=α,则∠BEF=2α,∴∠BAF=∠BEF=2α,∵∠B=∠AFE=α,∴∠BAO=∠B=α,∴∠OAF=∠BAO=α,∵OA=OF,∴∠AFO=∠OAF=α,∴△ABO≌△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论