2023年广东省佛山市南海区狮山镇八年级数学第二学期期末教学质量检测模拟试题含解析_第1页
2023年广东省佛山市南海区狮山镇八年级数学第二学期期末教学质量检测模拟试题含解析_第2页
2023年广东省佛山市南海区狮山镇八年级数学第二学期期末教学质量检测模拟试题含解析_第3页
2023年广东省佛山市南海区狮山镇八年级数学第二学期期末教学质量检测模拟试题含解析_第4页
2023年广东省佛山市南海区狮山镇八年级数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△中,、是△的中线,与相交于点,点、分别是、的中点,连结.若=6cm,=8cm,则四边形DEFG的周长是()A.14cm B.18cmC.24cm D.28cm2.若点在反比例函数的图像上,则下列各点一定在该图像上的是()A. B. C. D.3.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1004.下列说法正确的是()A.平行四边形的对角线相等B.一组对边平行,一组对边相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.有两对邻角互补的四边形是平行四边形5.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°<<180°)至△A′B′C,使得点A′恰好落在AB边上,则等于().A.150° B.90°C.60° D.30°6.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1 B.y=2x2﹣3C.y=2(x﹣8)2+1 D.y=2(x﹣8)2﹣37.某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息,该户今年上半年1至6月份用水量的中位数和众数分别是()A.4,5 B.4.5,6 C.5,6 D.5.5,68.长和宽分别是a,b的长方形的周长为10,面积为6,则a2bab2的值为()A.15 B.16 C.30 D.609.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和2910.如图,在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若,DE=3,则BC的长度是()A.6 B.8 C.9 D.10二、填空题(每小题3分,共24分)11.若是整数,则最小的正整数a的值是_________.12.在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为m?13.如图,矩形ABCD中,AB=,AD=1.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.14.如图,在平行四边形ABCD中,AB=10,BC=6,AC⊥BC,则平行四边形ABCD的面积为___________.15.如图,直线y1=x+1和直线y1=0.5x+1.5相交于点(1,3),则当x=_____时,y1=y1;当x______时,y1>y1.16.某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.17.一种病毒长度约为0.0000056mm,数据0.0000056用科学记数法可表示为______.18.已知一个多边形的内角和为540°,则这个多边形是______边形.三、解答题(共66分)19.(10分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠F=60°,,求的长.20.(6分)某班“数学兴趣小组”对函数的图象和性质进行了探究,过程如下,请补充完整.(1)自变量的取值范围是全体实数,与的几组对应值列表如下:…012345……42101234…其中,__________.(2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察图象,写出该函数的两条性质:①____________________________________________________________②____________________________________________________________(4)进一步探究函数图象发现:①方程的解是__________.②方程的解是__________.③关于的方程有两个不相等实数根,则的取值范围是__________.21.(6分)如图所示,正方形ABCD的边长为4,AD∥y轴,D(1,-1).(1)写出A,B,C三个顶点的坐标;(2)写出BC的中点P的坐标.22.(8分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形23.(8分)已知王亮家、公园、新华书店在一条直线上,下面的图象反映的过程是:王亮从家跑步去公园,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家.其中表示时间,表示王亮离家的距离.根据图象回答:(1)公园离王亮家,王亮从家到公园用了;(2)公园离新华书店;(3)王亮在新华书店逗留了;(4)王亮从新华书店回家的平均速度是多少?24.(8分)“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?25.(10分)如图,Rt△AOB中,∠OAB=90°,OA=AB,将Rt△AOB放置于直角坐标系中,OB在x轴上,点O是原点,点A在第一象限.点A与点C关于x轴对称,连结BC,OC.双曲线(x>0)与OA边交于点D、与AB边交于点E.(1)求点D的坐标;(2)求证:四边形ABCD是正方形;(3)连结AC交OB于点H,过点E作EG⊥AC于点G,交OA边于点F,求四边形OHGF的面积.26.(10分)如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,1),交y轴于点B(1,n),且m,n满足+(n﹣12)2=1.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(1,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

试题分析:∵点F、G分别是BO、CO的中点,BC=8cm∴FG=BC=4cm∵BD、CE是△ABC的中线∴DE=BC=4cm∵点F、G、E、D分别是BO、CO、AB、AC的中点,AO=6cm∴EF=AO=3cm,DG=AO=3cm∴四边形DEFG的周长="EF+FG+DG+DE=14"cm故选A考点:1、三角形的中位线;2、四边形的周长2、C【解析】

将点(-1,2)代入反比例函数,求得,再依次将各个选项代入解析式,即可求解.【详解】解:将点(-1,2)代入中,解得:,∴反比例函数解析式为,时,,A错误;时,,B错误;时,,C正确;时,,D错误;故选C.【点睛】本题考查反比例函数,难度一般,熟练掌握反比例函数上的点一定满足函数解析式,即可顺利解题.3、B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:﹣=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4、C【解析】

由平行四边形的判定和性质,依次判断可求解.【详解】解:A、平行四边形的对角线互相平分,但不一定相等,故A选项不合题意;B、一组对边平行,一组对边相等的四边形可能是等腰梯形,故B选项不合题意;C、对角线互相平分的四边形是平行四边形,故C选项符合题意;D、有两对邻角互补的四边形可能是等腰梯形,故D选项不合题意;故选:C.【点睛】本题考查了平行四边形的判定和性质,熟练掌握相关性质定理是解题的关键.5、C【解析】

由在Rt△ABC中,∠ACB=90°,∠ABC=30°,可求得∠A的度数,又由将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,易得△ACA′是等边三角形,继而求得答案.【详解】∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,∴∠A=90°−∠ABC=60°,∵将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,∴AC=A′C,∴△ACA′是等边三角形,∴α=∠ACA′=60°.故选C.【点睛】本题考查了旋转的性质及等边三角形的性质,熟练掌握性质定理是解题的关键.6、A【解析】【分析】根据平移的规律即可得到平移后函数解析式.【详解】抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线解析式为y=2(x-4+4)2-1,即y=2x2-1,再向上平移2个单位长度得到的抛物线解析式为y=2x2-1+2,即y=2x2+1;故选A【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.7、D【解析】

先根据平均数的定义求出1月份的用水量,再根据中位数和众数的定义求解可得.【详解】解:根据题意知1月份的用水量为5×1-(3+1+4+5+1)=1(t),∴1至1月份用水量从小到大排列为:3、4、5、1、1、1,则该户今年1至1月份用水量的中位数为、众数为1.故选:D【点睛】本题主要考查众数和中位数,解题的关键是根据平均数定义求出1月份用水量.求中位数时要注意先对数据排序.8、C【解析】

直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=1.故选C.【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.9、D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.10、C【解析】根据平行线分线段成比例的性质,由,可得,根据相似三角形的判定与性质,由DE∥BC可知△ADE∽△ABC,可得,由DE=3,求得BC=9.故选:C.二、填空题(每小题3分,共24分)11、1.【解析】

由于41a=1×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a为1.【详解】解:41a=1×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为1.故答案为:1.【点睛】本题考查二次根式的化简.12、1.【解析】试题分析:设小明、小刚新的速度分别是xm/s、ym/s,然后根据100s后两人相遇和两人到达终点的路程列出关于x、y的二元一次方程组,求解后再根据小明所跑的路程等于越野赛的全程列式计算即可得解.试题解析:设小明、小刚新的速度分别是xm/s、ym/s,由题意得,由①得,y=x+1.5③,由②得,4y-3=6x④,③代入④得,4x+6-3=6x,解得x=1.5,故这次越野赛的赛跑全程=1600+300×1.5=1600+450=1m.考点:一次函数的应用;二元一次方程组的应用.13、1、、1﹣【解析】

过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.【详解】①CF=CD时,过点C作CM⊥DF,垂足为点M,则CM∥AE,DM=MF,延长CM交AD于点G,∴AG=GD=1,∴CE=1,∵CG∥AE,AD∥BC,∴四边形AGCE是平行四边形,∴CE=AG=1,∴BE=1∴当BE=1时,△CDF是等腰三角形;②DF=DC时,则DC=DF=,∵DF⊥AE,AD=1,∴∠DAE=45°,则BE=,∴当BE=时,△CDF是等腰三角形;③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.∵AB=,BE=x,∴AE=,AF=,∵△ADF∽△EAB,∴,,x1﹣4x+1=0,解得:x=1±,∴当BE=1﹣时,△CDF是等腰三角形.综上,当BE=1、、1﹣时,△CDF是等腰三角形.故答案为:1、、1﹣.【点睛】此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.14、48【解析】

在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,再根据平行四边形的面积公式即可求解.【详解】∵AC⊥BC,∴∠ACB=90°,在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,∴平行四边形ABCD的面积为:BC×AC=6×8=48.故答案为:48.【点睛】本题考查了勾股定理及平行四边形的性质,利用勾股定理求得AC=8是解决问题的关键.15、1【解析】

直线y1=x+1和直线y1=0.5x+1.5交点的横坐标的值即为y1=y1时x的取值;直线y1=x+1的图象落在直线y1=0.5x+1.5上方的部分对应的自变量的取值范围即为时x的取值.【详解】解:∵直线和直线相交于点,∴当时,;由图象可知:当时,.故答案为:1;.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程的关系.16、众数【解析】

根据题意可得:商场应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.【详解】某商场应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.故答案为:众数.【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.17、5.1×10-1【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000051=5.1×10-1.故答案为:5.1×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、5.【解析】设这个多边形是n边形,由题意得,(n-2)×180°=540°,解之得,n=5.三、解答题(共66分)19、(1)证明见解析(2)3【解析】试题分析:(1)已知四边形ABCD为平行四边形,根据平行四边形的性质可得AB=CD,AD∥BC,所以∠F=∠1.再由AF平分∠BAD,可得∠2=∠1.所以∠F=∠2,根据等腰三角形的判定可得AB=BF,即可得BF=CD;(2)先判定△BEF为Rt△,在Rt△BEF即可求解.试题解析:(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BC.∴∠F=∠1.又∵AF平分∠BAD,∴∠2=∠1.∴∠F=∠2.∴AB=BF.∴BF=CD.(2)解:∵AB=BF,∠F=60°,∴△ABF为等边三角形.∵BE⊥AF,∠F=60°,∴∠BEF=90°,∠3=30°.在Rt△BEF中,设,则,∴.∴.∴AB=BF=3.20、(1)1;(2)见解析;(1)①函数值y≥2函数值y≥2;②当x>1时,y随x的增大而增大;(4)①;②或;③.【解析】

(1)求出x=-2时的函数值即可;(2)利用描点法画出函数图象即可;(1)结合图象写出两个性质即可;(4)分别求出方程的解即可解决问题;【详解】解:(1)x=-2时,y=|x-1|=1,故m=1,故答案为1.(2)函数图象如图所示:(1)①函数值y≥2,②当x>1时,y随x的增大而增大;故答案为函数值y≥2;当x>1时,y随x的增大而增大;(4)①方程|x-1|=2的解是x=1②方程|x-1|=1.5的解是x=2.5或-2.5③关于x的方程|x-1|=a有两个实数根,则a的取值范围是a>2,故答案为x=1,x=2.5或-2.5,a>2.【点睛】本题考查一次函数的图象与性质、一次函数与一元一次方程的关系等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21、(1)A(1,3),B(-3,3),C(-3,-1);(2)P的坐标(-3,1).【解析】

(1)利用正方形的性质即可解决问题;(2)根据中点坐标公式计算即可.【详解】解:(1)∵正方形ABCD的边长为4,AD∥y轴,D(1,-1).

∴A(1,3),B(-3,3),C(-3,-1),

(2)∵BP=BC=2,B(-3,3),C(-3,-1),

∴BC中点P的坐标(-3,1).点睛:本题考查正方形的性质、坐标与图形的性质、中点坐标公式等知识,解题的关键是熟练掌握点的位置与坐标的关系,记住中点坐标公式,属于基础题.22、(1)作图见解析;(2)证明见解析.【解析】(1)分别以B、D为圆心,以大于的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得EO=FO,进而利用菱形的判定方法得出结论.本题解析:(1)如图所示:EF即为所求;(2)证明:如图所示:∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,∵∴△DEO≌△BFO(ASA),∴EO=FO,∴四边形DEBF是平行四边形,又∵EF⊥BD,∴四边形DEBF是菱形.23、(2);(2);(3);(4)【解析】

(2)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的纵坐标,利用纵坐标的差可求出公园与新华书店的距离;(3)观察函数图象的横坐标,利用65-45可得在新华书店停留的时间;(4)根据函数图象中的数据利用路程÷时间即可以求得王亮从书店回家的平均速度.【详解】(2)由函数图象可得,公园离王亮家2.5千米,王亮从家到公园用了20;故答案为:2.5;20;(2)公园与新华书店的距离=2.5-2.5=2;故答案为:2;(3)由函数图象可得,王亮在书店停留了:65-45=20(分钟),故答案为:20;(4)所以,王亮从书店回家的平均速度是.【点睛】此题主要考查了从图象获取信息解决问题的能力,解答本题的关键是明确题意,利用数形结合的思想解答.24、(1)该班的总人数为50(人);(2)捐款10元的人数1人,图见解析;(3)该班平均每人捐款13.1元.【解析】

(1)根据频数、频率和总量的关系,用捐款15元的人数14除以所占的百分比28%,计算即可得解.(2)用该班总人数减去其它四种捐款额的人数,计算即可求出捐款10元的人数,然后补全条形统计图,根据众数的定义,人数最多即为捐款总额的众数.(3)根据加权平均数的求解方法列式计算即可得解.【详解】解:(1)该班的总人数为14÷28%=50(人).(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=1.图形补充如下图所示,众数是10:(3)∵(5×9+10×1+15×14+20×7+25×4)=×655=13.1(元),∴该班平均每人捐款13.1元.25、(1)点D的坐标为(1,1);(2)见解析;(1).【解析】

(1)由OA=AB,∠OAB=90°可得出∠AOB=∠ABO=45°,进而可设点D的坐标为(a,a),再利用反比例函数图象上点的坐标特征结合点D在第一象限,即可求出点D的坐标;(2)由点A与点C关于x轴对称结合OA=AB可得出OA=OC=AB=BC,进而可得出四边形ABCO是菱形,再结合∠OAB=90°,即可证出四边形ABCO是正方形;(1)依照题意画出图形,易证△AFG≌△AEG,进而可得出S四边形OHGF=S△AOH-S△AFG=S△AOH-S△AEG,设点A的坐标为(m,m),点E的坐标为(n,),易证AG=GE,进而可得出2m-n=,再利用三角形的面积公式结合S四边形OHGF=S△AOH-S△AEG,即可求出四边形OHGF的面积.【详解】解:(1)∵OA=AB,∠OAB=90°,∴∠AOB=∠ABO=45°,∴设点D的坐标为(a,a).∵点D在反比例函数y=的图象上,∴a=,解得:a=±1.∵点D在第一象限,∴a=1,∴点D的坐标为(1,1).(2)证明:∵点A与点C关于x轴对称,∴OA=OC,AB=BC.又∵OA=AB,∴OA=OC=AB=BC,∴四边形ABCO是菱形.又∵∠OAB=90°,∴四边形ABCO是正方形.(1)依照题意,画出图形,如图所示.∵EG⊥AC,∴∠AGE=∠AGF=90°.∵四边形ABCO是正方形,∴AC⊥OB.∵OA=AB,∴∠FAG=EAG.在△AFG和△AEG中,,∴△AFG≌△AEG(ASA),∴S四边形OHGF=S△AOH-S△AFG=S△AOH-S△AEG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论