




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图所示,▱ABCD的对角线AC,BD相交于点O,,,,▱ABCD的周长()A.11 B.13 C.16 D.222.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2C.y1<y2<0 D.y2<0<y13.下列各组数中,以它们为边的三角形是直角三角形的是()A.1,2,3 B.9,16,25 C.12,15,20 D.1,2,4.如图,在正方形中,点,分别在,上,,与相交于点.下列结论:①垂直平分;②;③当时,为等边三角形;④当时,.其中正确的结论是()A.①③ B.②④ C.①③④ D.②③④5.如图是由四个全等的直角三角形拼接而成的图形,其中,,则的长是()A.7 B.8 C. D.6.已知下面四个方程:+3x=9;+1=1;=1;=1.其中,无理方程的个数是()A.1 B.2 C.3 D.47.实数在数轴上对应点如图所示,则化简的结果是()A. B. C. D.8.如图,△ABC顶点C的坐标是(1,-3),过点C作AB边上的高线CD,则垂足D点坐标为()A.(1,0) B.(0,1)C.(-3,0) D.(0,-3)9.平行四边形的一边长为10,则它的两条对角线长可以是()A.10和12 B.12和32 C.6和8 D.8和1010.下列计算正确的是()A.=﹣3 B. C.5×5=5 D.二、填空题(每小题3分,共24分)11.一组数据-3,x,-2,3,1,6的中位数是1,则其方差为________12.将直线沿y轴向上平移5个单位长度后,所得图象对应的函数关系式为_________.13.如图,在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得O,A,B,C四点构成平行四边形,则C点的坐标为______________________________.
14.不等式组的解集为_________.15.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.16.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____.17.如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.18.如图,在中,已知,则_______.三、解答题(共66分)19.(10分)当在什么范围内取值时,关于的一元一次方程的解满足?20.(6分)为迎接:“国家卫生城市”复检,某市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;②当买A型垃圾箱多少个时总费用最少,最少费用是多少?21.(6分)如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.22.(8分)计算或化简:(1)计算:(2)先化简,再求值:,其中.23.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.24.(8分)一条笔直的公路上有甲乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地.设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象.(1)李越骑车的速度为______米/分钟;(2)B点的坐标为______;(3)李越从乙地骑往甲地时,s与t之间的函数表达式为______;(4)王明和李越二人______先到达乙地,先到______分钟.25.(10分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?26.(10分)某小区有一块四边形空地ABCD,如图所示,现计划在这块地上种植每平方米60元的草坪用以美化环境,施工人员测得(单位:米):AB=3,BC=4,CD=12,DA=13,∠B=90°,求小区种植这种草坪需多少钱?
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.2、B【解析】解:∵点(﹣1,y1),(4,y1)在一次函数y=3x﹣1的图象上,∴y1=﹣5,y1=10,∵10>0>﹣5,∴y1<0<y1.故选B.3、D【解析】
根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、∵12+22≠32,∴不能构成直角三角形,故本选项不符合题意;B、∵92+162≠252,∴不能构成直角三角形,故本选项不符合题意;C、∵122+152≠202,∴不能构成直角三角形,故本选项不符合题意;D、∵12+22=2,∴能够构成直角三角形,故本选项符合题意.故选:D.【点睛】点评:本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4、A【解析】
①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
②设BC=x,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
④当∠EAF=60°时,可证明△AEF是等边三角形,从而可得∠AEF=60°,而△CEF是等腰直角三角形,得∠CEF=45°,从而可求出∠AEB=75°,进而可得结论.【详解】解:①四边形ABCD是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE和Rt△ADF中,,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故①正确).
②设BC=a,CE=y,
∴BE+DF=2(a-y)
EF=y,
∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°-2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,由①知AE=AF,∴△AEF是等边三角形,∴∠AEF=60°,又△CEF为等腰直角三角形,∴∠CEF=45°∴∠AEB=180°-∠AEF-∠CEF=75°,∴∠AEB≠∠AEF,故④错误.
综上所述,正确的有①③,
故选:A.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.5、C【解析】
由图易知EG与FG的长,然后根据勾股定理即可求出EF的长.【详解】解:如图,由题意可知:AE=BG=FC=5,BE=CG=12,∴EG=BE-BG=12-5=7,FG=CG-FC=12-5=7,∴在Rt△EGF中,EF==7.故选C.【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.6、A【解析】
无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义即可判断.【详解】无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义只有第一个方程为无理方程.即+3x=9,1个,故选:A.【点睛】本题直接考查了无理方程的概念--根号下含有未知数的方程即为无理方程.准确掌握此概念即可解题..7、B【解析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a-b<0,∴=|b|+|a-b|-|a|,=b-(a-b)+a,=b-a+b+a,=2b.故选B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.8、A【解析】
根据在同一平面内,垂直于同一直线的两直线平行可得CD∥y轴,再根据平行于y轴上的点的横坐标相同解答.【详解】如图,∵CD⊥x轴,∴CD∥y轴,∵点C的坐标是(1,-3),∴点D的横坐标为1,∵点D在x轴上,∴点D的纵坐标为0,∴点D的坐标为(1,0).故选:A.【点睛】本题考查了坐标与图形性质,比较简单,作出图形更形象直观.9、A【解析】
根据平行四边形的性质推出OA=OC=AC,OB=OD=BD,求出每个选项中OA和OB的值,再判断OA、OB、AD的值是否能组成三角形即可.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,
A、∵AC=10,BD=12,∴OA=5,OD=6,∵6-5<10<6+5,∴此时能组成三角形,故本选项符合题意;
B、∵AC=12,BD=32,∴OA=6,OD=16,∵16-6=10,∴此时不能组成三角形,故本选项不符合题意;
C、∵AC=6,BD=8,∴OA=3,OD=4,∵3+4<10,∴此时不能组成三角形,故本选项不符合题意;
D、∵AC=8,BD=10,∴OA=4,OD=5,∵4+5<10,∴此时不能组成三角形,故本选项不符合题意;故选:A.【点睛】本题考查了三角形的三边关系定理和平行四边形的性质,关键是判断OA、OB、AD的值是否符合三角形的三边关系定理.10、D【解析】
根据二次根式的性质对A进行判断;根据二次根式的加减运算对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、原式=3,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=25,所以C选项错误;D、原式==2,所以D选项正确.故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(每小题3分,共24分)11、9【解析】
根据中位数的定义,首先确定x的值,再计算方差.【详解】解:首先根据题意将所以数字从小到达排列,可得-3,-2,1,3,6因为这五个数的中位数为1再增加x后要使中位数为1,则因此可得x=1所以平均数为:所以方差为:故答案为9.【点睛】本题主要考查根据中位数求未知数和方差的计算,关键在于根据题意计算未知数.12、【解析】分析:直接根据“上加下减”的原则进行解答即可.详解:由“上加下减”的原则可知,直线y=-2x﹣2向上平移5个单位,所得直线解析式是:y=-2x﹣2+5,即y=-2x+1.故答案为:y=-2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13、(3,4)或(1,-2)或(-1,2)【解析】
由平行四边形的性质:平行四边形的对边平行且相等,即可求得点C的坐标;注意三种情况.【详解】如图所示:∵以O、A、B、C为顶点的四边形是平行四边形,O(0,0),A(1,3),B(2,0),
∴三种情况:
①当AB为对角线时,点C的坐标为(3,4);
②当OB为对角线时,点C的坐标为(1,-2);
③当OA为对角线时,点C的坐标为(-1,2);
故答案是:(3,4)或(1,-2)或(-1,2).【点睛】考查了平行四边形的性质:平行四边形的对边平行且相等.解题的关键是要注意数形结合思想的应用.14、【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】解:解不等式①得:,
解不等式②得:,
∴不等式组的解集为,
故答案为:.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15、65°.【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【详解】在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD=(180°-50°)=65°,∴∠ECB=130°-65°=65°.故答案为65°.16、1【解析】
根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,由此就可以求出周长.【详解】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=1.故答案为1.【点睛】本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.17、67.1.【解析】
由四边形ABCD是正方形,可得AB=BC,∠CBD=41°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,
所以AB=BC,∠CBD=41°,
根据折叠的性质可得:A′B=AB,
所以A′B=BC,
所以∠BA′C=∠BCA′==67.1°.
故答案为:67.1.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18、【解析】
根据题意,先求出AD的长度,然后相似三角形的性质,得到,即可求出DE.【详解】解:∵,∴,∵,∴,∴,∴,∴;故答案为:.【点睛】本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的性质进行解题.三、解答题(共66分)19、【解析】
先求出方程的解,根据已知方程的解取值范围列出不等式组,再求出不等式组的解集即可.【详解】解:解方程得:,关于的一元一次方程的解满足,,解得:,所以当时,关于的一元一次方程的解满足.【点睛】本题考查了解一元一次方程和解一元一次不等式组,根据方程的解取值范围得出关于的不等式组是解此题的关键.20、(1)每个A型垃圾箱100元,每个B型垃圾箱120元;(2)①w=﹣20x+3600(0≤x≤16且x为整数);②买16个A型垃圾箱总费用最少,最少费用是1元【解析】
(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据“购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元”,即可得出关于m、n的二元一次方程组,解之即可得出结论;(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,根据总价=单价×购进数量,即可得出w关于x的函数关系式;②利用一次函数的性质解决最值问题.【详解】解:(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据题意得:解得:.答:每个A型垃圾箱100元,每个B型垃圾箱120元.(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,根据题意得:w=100x+120(30﹣x)=-20x+3600(0≤x≤16且x为整数).②∵w=-20x+3600中k=-20<0,∴w随x值增大而减小,∴当x=16时,w取最小值,最小值=-20×16+3600=1.答:买16个A型垃圾箱总费用最少,最少费用是1元.故答案为(1)每个A型垃圾箱100元,每个B型垃圾箱120元;(2)①w=-20x+3600(0≤x≤16且x为整数);②买16个A型垃圾箱总费用最少,最少费用是1元.【点睛】本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量间的关系,找出w关于x的函数关系式;②利用一次函数的性质,解决最值问题.21、(1)四边形AECF为平行四边形;(2)见解析【解析】试题分析:(1)四边形AECF为平行四边形.通过平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”得出结论:四边形AECF为平行四边形.(2)根据直角△BAC中角与边间的关系证得△AEC是等腰三角形,即平行四边形AECF的邻边AE=EC,易证四边形AECF是菱形.(1)解:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)证明:∵AE=BE,∴∠B=∠BAE,又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,∴∠BCA=∠CAE,∴AE=CE,又∵四边形AECF为平行四边形,∴四边形AECF是菱形.22、(1)1;(2)2【解析】
(1)根据负整数指数幂、绝对值、零指数幂可以解答本题;(2)根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】解:(1)原式=;(2)====,把代入,得:原式=【点睛】本题考查分式的化简求值、负整数指数幂、绝对值、零指数幂,解答本题的关键是明确它们各自的计算方法.23、80120【解析】
(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;
(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;
(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【详解】(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1h或6.25h,两车之间的距离为500km.【点睛】考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.24、(1)240;(2)(12,2400);(1)s=240t;(4)李越,1【解析】
(1)由函数图象中的数据可以直接计算出李越骑车的速度;(2)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保安工作总结计划环保行业保安工作的废物管理
- 数字化转型的实施方案计划
- 品牌价值与生产计划的协同
- 竹篱墙施工方案
- 地磅土建施工方案
- 直击隐患现场安全生产违章行为解析
- 大学课件高等数学曲线积分与曲面积分
- 2025广东广州劳动合同模板
- 细化知识点的证券从业资格证试题及答案
- 2025年景观设计合同补充协议书
- 加油站的员工培训与技能提升
- 小米财务管理
- 《变态反应性皮肤病》课件
- 2021年高考物理试卷(福建)(空白卷)
- 2025年4月日历表(含农历-周数-方便记事备忘)
- 二零二五年光伏发电项目碳排放权交易合作协议3篇
- 浙教版七年级下册数学期中试卷-2
- 2024年江苏省宿迁市中考生物真题卷及答案解析
- T∕HGJ 12400-2021 石油化工仪表线缆选型设计标准
- 2023年四川省遂宁市经开区社区工作人员(综合考点共100题)模拟测试练习题含答案
- 测绘高级工程师答辩题库
评论
0/150
提交评论