版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(0,4)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数值随自变量的增大而减小2.计算(﹣a)2•a3的结果正确的是()A.﹣a6 B.a6 C.﹣a5 D.a53.下列函数中,自变量x的取值范围是x≥2的是()A. B.C. D.4.下列四组线段中,不能组成直角三角形的是()A.,, B.,,C.,, D.,,5.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BCB.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BCD.∠ABD=∠ADB,∠BAO=∠DCO6.如图,在中,已知,分别为边,的中点,连结,若,则等于()A.70º B.67.5º C.65º D.60º7.如果一个直角三角形的两条边长分别为和,那么这个三角形的第三边长为()A. B. C. D.或8.一个多边形的内角和是外角和的倍,则这个多边形的边数为()A. B. C. D.9.若一个直角三角形的两边长为12、13,则第三边长为()A.5 B.17 C.5或17 D.5或31310.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.40cm B.30cm C.20cm D.10cm二、填空题(每小题3分,共24分)11.在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。12.点P(a,a-3)在第四象限,则a的取值范围是_____.13.在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的A¢处,折痕为PQ,当点A¢在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A¢在BC边上可移动的最大距离为_________.14.关于的一元二次方程有一个解是,则__________.15.在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.16.某公司招聘英语翻译,听、说、写成绩按3∶3∶2计入总成绩.某应聘者的听、说、写成绩分别为80分,90分,95分(单项成绩和总成绩满分均为百分制),则他的总成绩为____________分.17.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是_____.18.写出一个图象经过点(1,﹣2)的函数的表达式:_____.三、解答题(共66分)19.(10分)已知:如图,在中,,,为外角的平分线,.(1)求证:四边形为矩形;(2)当与满足什么数量关系时,四边形是正方形?并给予证明20.(6分)(1)解分式方程:(2)解不等式组,并在数轴上表示其解集.21.(6分)解方程:x2-3x=5x-122.(8分)为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.23.(8分)点P(-2,4)关于y轴的对称点P'在反比例函数y=(k≠0)的图象上.(1)求此反比例函数关系式;(2)当x在什么范围取值时,y是小于1的正数?24.(8分)解下列方程(1)(2)25.(10分)因式分解:(1)a(x﹣y)﹣b(y﹣x)2(2)2x3﹣8x2+8x.26.(10分)如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=x﹣1与y轴交于点E,将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.(1)点A的坐标为,点B的坐标为;(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围;(3)易知AE⊥AD于点A,若直线l交折线AD﹣DC于点P,当△AEP为直角三角形时,请直接写出n的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据一次函数y=-2x+4的系数k=-2<0,b>0,所以函数的图像不经过第三象限,y随x增大而减小,函数的图像与y轴的交点为(0,4),根据一次函数的平移,可知向下平移4个单位得y=-2x的图像.故选:B.点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.2、D【解析】
直接利用积的乘方运算法则以及结合同底数幂的乘法运算法则计算得出答案.【详解】解:(﹣a)2•a3=a2•a3=a1.故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.3、D【解析】
根据分式与二次根式有意义的条件依次分析四个选项,比较哪个选项符合条件,可得答案.【详解】解:A、y=有意义,∴2-x≥0,解得x≤2;
B、y=有意义,∴x-2>0,解得x>2;
C、y=有意义,∴4-x2≥0,解得-2≤x≤2;
D、y=有意义,∴x+2≥0且x-2≥0,解得x≥2;
分析可得D符合条件;
故选:D.【点睛】本题考查函数自变量的取值问题,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.4、A【解析】
由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、22+32≠42,故不能组成直角三角形,符合题意;
B、12+2=22,故能组成直角三角形,不符合题意;
C、12+22=()2,故能组成直角三角形,不符合题意;
D、52+122=132,故能组成直角三角形,不符合题意.
故选:A.【点睛】本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要验证两小边的平方和是否等于最长边的平方即可判断.5、D【解析】
平行四边形的性质有①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形,根据以上内容判断即可.【详解】A、∵AD∥BC,∴∠ADB=∠CBD,在△BOC和△DOA中∠ADO=∴△BOC≌△DOA(AAS),∴BO=DO,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵∠ABC=∠ADC,AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC+∠BCD=180°,∴AB∥DC,∴四边形ABCD是平行四边形,正确,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,正确,故本选项错误;D、由∠ABD=∠ADB,∠BAO=∠DCO,无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选D.【点睛】本题考查了对平行四边形和等腰梯形的判定的应用,注意:平行四边形的性质有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.6、A【解析】
由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.【详解】∵D,E分别为AB,AC的中点,∴DE是三角形的中位线,∴DE∥BC,∴∠AED=∠C=70°,故选A【点睛】此题考查平行线的性质,三角形中位线定理,难度不大7、D【解析】
根据告诉的两边长,利用勾股定理求出第三边即可.注意6和10可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当6和10是两条直角边时,
第三边=,
当6和10分别是一斜边和一直角边时,
第三边==8,
所以第三边可能为8或2.
故选:D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.8、B【解析】
设这个多边形有n条边,根据内角和是它的外角和的2倍,列方程,然后解方程即可.【详解】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=310°×:2,解得n=1.故这个多边形的边数是1.故选B【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为310°.9、D【解析】
根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边=122+13当13,12分别是斜边和一直角边时,第三边=132-12故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.10、A【解析】
由菱形的性质得∠AOB=90°,根据直角三角形斜边上的中线等于斜边的一半得AB=2OM,从而可求出菱形的周长.【详解】∵四边形ABCD是菱形,∴∠AOB=90°,∵M是AB边的中点,∴AB=2OM=10,∴菱形ABCD的周长为10×4=1.故选A.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,熟练掌握菱形的对角线互相垂直,直角三角形斜边中线等于斜边的一半是解答本题的关键.菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有两条对称轴.二、填空题(每小题3分,共24分)11、8或4【解析】
由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.【详解】解:∵AD=9,AE:ED=1:2,∴AE=3,ED=6,又∵EF=2>AB,分情况讨论:如下图:当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,CF=GD=ED+GE,在RT三角形GFE中,GE==2,则此时CF=6+2=8;如下图:当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,则此时CF=6-2=4;综上,CF的长为8或4.【点睛】本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.12、0<a<3【解析】
根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】∵点P(a,a-3)在第四象限,∴,解得0<a<3.13、1【解析】如图1,当点D与点Q重合时,根据翻折对称性可得A′D=AD=13,在Rt△A′CD中,A′D2=A′C2+CD2,即132=(13-A′B)2+52,解得A′B=1,如图2,当点P与点B重合时,根据翻折对称性可得A′B=AB=5,∵5-1=1,∴点A′在BC边上可移动的最大距离为1.14、-3【解析】∵方程的一个解为,∴将代入原方程,得:,则,∵是关于的一元二次方程.∴,即,∴.15、【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.【详解】∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.∴从中随机摸出一个球,摸到红球的概率是:故答案为:【点睛】此题考查概率公式,掌握运算法则是解题关键16、87.1【解析】分析:运用加权平均数的公式直接计算.用80分,90分,91分,分别乘以3,3,2,再用它们的和除以8即可.详解:由题意知,总成绩=(80×3+90×3+91×2)÷(3+3+2)=87.1(分).故答案为:87.1.点睛:本题考查的是加权平均数的求法.本题易出现的错误是直接求出80,90,91的平均数.17、x<1【解析】试题解析:一次函数y=kx+b经过点(1,2),且函数值y随x的增大而增大,∴当y<2时,x的取值范围是x<1.故答案为:x<1.18、【解析】
设y=kx,把点(1,﹣2)代入即可(答案不唯一).【详解】设y=kx,把点(1,﹣2)代入,得k=-2,∴(答案不唯一).故答案为:.【点睛】本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.三、解答题(共66分)19、(1)见解析(2),理由见解析.【解析】
(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)由正方形的性质逆推得,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=×180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当时,四边形ADCE是一个正方形.理由:∵AB=AC,AD⊥BC,,,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当时,四边形ADCE是一个正方形.【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.20、(1)原方程无解;(2)x≤1,数轴见解析;【解析】
(1)利用解分式方程的一般步骤求解即可.(2)求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【详解】(1)去分母,方程两边同时乘以(x-3),可得:x-2=2(x-3)+1,
去括号可得:x-2=2x-6+1,
解得x=3,
检验:当x=3时,x-3=0,
∴x=3是分式方程的增根,原方程无解.(2)解:,
∵解不等式①得:x≤1,
解不等式②得:x<4,
∴不等式组的解集为:x≤1,
在数轴上表示不等式组的解集为:
.【点睛】此题考查解分式方程,解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.21、x=4±【解析】
根据一元二次方程的解法即可求出答案.【详解】解:∵x2-3x=5x-1,∴x2-8x=-1∴x2-8x+16=15,∴(x-4)2=15,∴x=4±;【点睛】此题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题是属于基础题型.22、(1)100人闯红灯(2)见解析;(3)众数为15人,中位数为20人【解析】
(1)根据11﹣12点闯红灯的人数除以所占的百分比即可求出7﹣12这一时间段共有的人数.(2)根据7﹣8点所占的百分比乘以总人数即可求出7﹣8点闯红灯的人数,同理求出8﹣9点的人数,然后可计算出10﹣11点的人数,补全条形统计图即可;求出9﹣10及10﹣11点的百分比,分别乘以360度即可求出圆心角的度数.(3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可.【详解】解:(1)根据题意得:40÷40%=100(人),∴这一天上午7:00~12:00这一时间段共有100人闯红灯.(2)根据题意得:7﹣8点的人数为100×20%=20(人),8﹣9点的人数为100×15%=15(人),9﹣10点占=10%,10﹣11点占1﹣(20%+15%+10%+40%)=15%,人数为100×15%=15(人).补全图形,如图所示:9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°.(3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为20人.23、(1)y=;(2)x>1;【解析】
(1)先求出点P(-2,4)关于y轴的对称点P′的坐标,把点P′的坐标代入反比例函数y=(k≠0)即可求出k的值,进而得出反比例函数的解析式;(2)根据y是小于1的正数列出关于x的不等式组,求出x的取值范围即可.【详解】(1)∵点P(-2,4)与点P′关于y轴对称,∴P′(2,4),∵点P′在反比例函数y=(k≠0)的图象上,∴4=,解得k=1,∴反比例函数的关系式为:y=;(2)∵y是小于1的正数,∴0<<1,解得x>1.【点睛】此题考查待定系数法求反比例函数解析式,反比例函数的性质,关于x轴、y轴对称的点的坐标,解题关键在于把已知点代入解析式24、(1),;(2),【解析】
(1)用直接开平方法求解即可;(2)用求根公式法求解即可.【详解】(1)解:由.得.即,或.于是,方程的两根为,.(2)解:,,..方有两个不相等的实数根.即,.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.25、(1)(x﹣y)[a﹣b(x﹣y)];(1)1x(x﹣1)1.【解析】
(1)提取公因式x-y,在医院公因式法进行计算即可(1)先提取公因式1x,再对余下的多项式利用完全平方公式继续分解【详解】(1)原式=a(x-y)-b(y-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风险分级管控培训课件
- 酒店骨碟更换培训
- 化学实验安全课件
- 山东省聊城颐中外国语学校2024-2025学年高三上学期第一次月考语文试题 - 副本
- 2024-2025学年河南省南阳市高二上学期期中适应性考试数学试题(含答案)
- T-YNZYC 0081-2023 绿色药材 蜘蛛香种苗生产技术规程
- 21圆明园的毁灭作业
- 珍惜时间课件图文
- 信息技术(第2版)(拓展模块)教案5-模块3 3.5 大数据可视化工具
- 木材采运新时代-创新设计引领行业未来
- 物理学与人类文明学习通超星课后章节答案期末考试题库2023年
- 八年级道德与法治上册 (法不可违) 教学课件
- 空心六棱块护坡施工方案
- 一只窝囊的大老虎说课
- 《行政许可法》讲义课件
- 综采工作面及顺槽发生冒顶安全技术措施
- DB51T3085-2023川产道地药材生产技术规范 麦冬
- 三年级上册 《方向与位置》(说课稿)-三年级上册数学青岛版
- 地理信息安全在线培训考试系统题库
- GB/T 42779-2023海洋牧场基本术语
- 五年级上册英语冀教版课件The Story of Nian
评论
0/150
提交评论