版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第26讲椭圆一、选择题AUTONUM.(2018全国卷Ⅱ)已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为()B.C.D.AUTONUM.(2018上海)设是椭圆上的动点,则到该椭圆的两个焦点的距离之和为()A. B.C. D.AUTONUM.(2017浙江)椭圆的离心率是()A. B.C. D.AUTONUM.(2017新课标Ⅲ)已知椭圆:的左、右顶点分别为,,且以线段为直径的圆与直线相切,则的离心率为()A. B.C. D.AUTONUM.(2016年全国III)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A. B. C. D.AUTONUM.(2016年浙江)已知椭圆:()与双曲线:()的焦点重合,,分别为,的离心率,则()A.且B.且C.且D.且AUTONUM.(2014福建)设分别为和椭圆上的点,则两点间的最大距离是()A. B.C. D.AUTONUM.(2013新课标1)已知椭圆eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为()A.eq\f(x2,45)+eq\f(y2,36)=1B.eq\f(x2,36)+eq\f(y2,27)=1C.eq\f(x2,27)+eq\f(y2,18)=1D.eq\f(x2,18)+eq\f(y2,9)=1AUTONUM.(2012新课标)设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为()A、B、C、D、二、填空题AUTONUM.(2018浙江)已知点,椭圆()上两点,满足,则当=___时,点横坐标的绝对值最大____.AUTONUM.(2018北京)已知椭圆,双曲线.若双曲线的两条渐近线与椭圆的四个交点及椭圆的两个焦点恰为一个正六边形的顶点,则椭圆的离心率为____;双曲线的离心率为____.AUTONUM.(2016江苏省)如图,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于两点,且,则该椭圆的离心率是____.AUTONUM.(2015新课标1)一个圆经过椭圆的三个顶点,且圆心在的正半轴上,则该圆的标准方程为____.AUTONUM.(2014江西)过点作斜率为的直线与椭圆:相交于两点,若是线段的中点,则椭圆的离心率等于____.AUTONUM.(2014辽宁)已知椭圆:,点与的焦点不重合,若关于的焦点的对称点分别为,,线段的中点在上,则____.AUTONUM.(2014江西)设椭圆的左右焦点为,作作轴的垂线与交于两点,与轴相交于点,若,则椭圆的离心率等于____.AUTONUM.(2014安徽)设分别是椭圆的左、右焦点,过点的直线交椭圆于两点,若轴,则椭圆的方程为____.AUTONUM.(2013福建)椭圆的左、右焦点分别为,焦距为.若直线与椭圆的一个交点满足,则该椭圆的离心率等于____.AUTONUM.(2012江西)椭圆的左、右顶点分别是,左、右焦点分别是.若成等比数列,则此椭圆的离心率为____.AUTONUM.(2011浙江)设分别为椭圆的左、右焦点,点在椭圆上,若;则点的坐标是____.三、解答题AUTONUM.(2018全国卷Ⅰ)设椭圆的右焦点为,过的直线与交于,两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.AUTONUM.(2018全国卷Ⅲ)已知斜率为的直线与椭圆:交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.AUTONUM.(2018天津)设椭圆()的左焦点为,上顶点为.已知椭圆的离心率为,点的坐标为,且.(1)求椭圆的方程;(2)设直线:与椭圆在第一象限的交点为,且与直线交于点.若(O为原点),求k的值.AUTONUM.(2017新课标Ⅰ)已知椭圆:,四点,,,中恰有三点在椭圆上.(1)求的方程;(2)设直线不经过点且与相交于,两点.若直线与直线的斜率的和为,证明:过定点.AUTONUM.(2017新课标Ⅱ)设为坐标原点,动点在椭圆:上,过做轴的垂线,垂足为,点满足QUOTENP=2NM.(1)求点的轨迹方程;(2)设点在直线上,且QUOTEOP⋅PQ=1.证明:过点且垂直于的直线过的左焦点.AUTONUM.(2017江苏)如图,在平面直角坐标系中,椭圆:的左、右焦点分别为,,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.AUTONUM.(2017天津)设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.AUTONUM.(2017山东)在平面直角坐标系中,椭圆:的离心率为,焦距为.(Ⅰ)求椭圆的方程;(Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.AUTONUM.(2016年北京)已知椭圆:的离心率为,,,,的面积为1.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上一点,直线与轴交于点,直线与轴交于点.求证:为定值.AUTONUM.(2015新课标2)已知椭圆C:(),直线不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与的斜率的乘积为定值;(Ⅱ)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边行?若能,求此时l的斜率;若不能,说明理由.AUTONUM.(2015北京)已知椭圆:的离心率为,点和点都在椭圆上,直线交轴于点.(Ⅰ)求椭圆的方程,并求点的坐标(用,表示);(Ⅱ)设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点,使得?若存在,求点的坐标;若不存在,说明理由.AUTONUM.(2015安徽)设椭圆的方程为,点为坐标原点,点的坐标为,点的坐标为,点在线段上,满足,直线的斜率为.(Ⅰ)求的离心率;(Ⅱ)设点的坐标为,为线段的中点,点关于直线的对称点的纵坐标为,求的方程.AUTONUM.(2015山东)平面直角坐标系中,已知椭圆:的离心率为,左、右焦点分别是、.以为圆心以3为半径的圆与以为圆心以1为半径的圆相交,且交点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.(i)求QUOTE|OQ||OP|的值;(ii)求△面积的最大值.AUTONUM.(2014新课标1)已知点,椭圆:的离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.(Ⅰ)求的方程;(Ⅱ)设过点的动直线与相交于两点,当的面积最大时,求的方程.AUTONUM.(2014浙江)如图,设椭圆动直线与椭圆只有一个公共点,且点在第一象限.(Ⅰ)已知直线的斜率为,用表示点的坐标;(Ⅱ)若过原点的直线与垂直,证明:点到直线的距离的最大值为.AUTONUM.(2014新课标2)设,分别是椭圆:的左,右焦点,是上一点且与轴垂直,直线与的另一个交点为.(Ⅰ)若直线的斜率为,求的离心率;(Ⅱ)若直线在轴上的截距为2,且,求.AUTONUM.(2014安徽)设,分别是椭圆:的左、右焦点,过点的直线交椭圆于两点,(Ⅰ)若的周长为16,求;(Ⅱ)若,求椭圆的离心率.AUTONUM.(2014山东)在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.(I)求椭圆的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且,直线BD与轴、轴分别交于M,N两点.(ⅰ)设直线BD,AM的斜率分别为,证明存在常数使得,并求出的值;(ⅱ)求面积的最大值.AUTONUM.(2014湖南)如图5,为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.(I)求的方程;(Ⅱ)是否存在直线,使得与交于两点,与只有一个公共点,且?证明你的结论.AUTONUM.(2014四川)已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.AUTONUM.(2013安徽)已知椭圆的焦距为4,且过点.(Ⅰ)求椭圆C的方程;(Ⅱ)设为椭圆上一点,过点作轴的垂线,垂足为.取点,连接,过点作的垂线交轴于点.点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆C一定有唯一的公共点?并说明理由.AUTONUM.(2013湖北)如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为A,B,C,D.记,△和△的面积分别为和.第20题图第20题图(Ⅰ)当直线与轴重合时,若,求的值;(Ⅱ)当变化时,是否存在与坐标轴不重合的直线l,使得?并说明理由.AUTONUM.(2013天津)设椭圆的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若,求k的值.AUTONUM.(2013山东)椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为l.(Ⅰ)求椭圆的方程;(Ⅱ)点是椭圆上除长轴端点外的任一点,连接.设的角平分线交的长轴于点,求的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点.设直线的斜率分别为,若,试证明为定值,并求出这个定值.AUTONUM.(2012北京)已知椭圆:的一个顶点为,离心率为.直线与椭圆交于不同的两点M,N.(Ⅰ)求椭圆的方程;(Ⅱ)当△AMN得面积为时,求的值.AUTONUM.(2013安徽)如图,分别是椭圆:+=1()的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60°.(Ⅰ)求椭圆的离心率;(Ⅱ)已知△的面积为40,求a,b的值.AUTONUM.(2012广东)在平面直角坐标系中,已知椭圆:的离心率,且椭圆上的点到的距离的最大值为3.(Ⅰ)求椭圆的方程;(Ⅱ)在椭圆上,是否存在点使得直线:与圆O:相交于不同的两点,且的面积最大?若存在,求出点的坐标及相对应的的面积;若不存在,请说明理由.AUTONUM.(2011陕西)设椭圆C:过点(0,4),离心率为(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.AUTONUM.(2011山东)在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度林地病虫害防治服务合同
- 2024年度塔吊施工安全监管合同
- 2021年领导干部个人工作总结报告
- 2024年度委托代运营合同(社交媒体)
- 2024年度北京二手房交易合同(含装修工程质量标准)
- 2024年度南京个人房屋买卖合同说明
- 04版渣土运输及环保处理合同
- 2024年度北京医疗设备采购合同设备质量与售后服务
- 2024年度自卸车租赁合同的最终解释权
- 2024版标的加工承揽廉政承诺合同
- 2024至2030年中国防爆配电箱行业市场发展现状及前景趋势与投资战略研究报告
- 智能安防监控设备采购合同
- 2021年国家开放大学《工程力学(本)》形考任务(1-4)试题及答案解析
- 2024年山东省高考物理试卷(真题+答案)
- 急救在身边智慧树知到期末考试答案章节答案2024年山东第一医科大学
- 2024企业集采业务交易平台解决方案
- 酒店网络安全管理制度
- 运动与健康(山东大学)学堂云网课答案
- 单侧双通道UBE手术
- 科研设计及研究生论文撰写智慧树知到期末考试答案2024年
- 文旅行业重大安全风险分析
评论
0/150
提交评论