版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Boltzmann线性叠加原理和时间温度换算法则第一页,共二十九页。主要内容Boltzmann线性叠加原理和时间温度换算法则概念Boltzmann线性叠加原理和时间温度换算法则的用途及如何应用工程实例第二页,共二十九页。一Boltzmann线性叠加原理粘弹性分析的基本元件在研究沥青材料的粘弹性时我们习惯上采用如图1所示的粘弹性元件。其中a图中所示的弹簧代表弹性体,其应力应变关系满足虎克定律,弹性变形为瞬时变形,外力撤销后变形完全恢复。b图中所示的粘壶代表牛顿流体,其应力与应变关系满足牛顿定律,剪应力与剪变率间具有比例关系。即
第三页,共二十九页。Kelvin元件和Maxwell元件
1.将弹簧与粘壶类似于电路进行并联,得到如图2所示的kelvin元件,Kelvin元件是粘弹性理论的最基本的模型,我们常用它表示蠕变和延迟弹性。当元件受到应力作用时,弹簧和粘壶的变形相同,元件总体承受的应力为弹簧和粘壶应力之和。在刚加载应力时,由于粘壶的限制,kelvin元件不能立即产生应变,应力完全由
粘壶承担。随着时间的增加,粘壶发生粘性流动,弹
簧也相应的发生变形。当应变增加到最大时,弹簧变形
达到极限,应变不在增加。这种应力输入恒定、应变响
应随时间逐渐增加的力学行为称为蠕变。卸去应力后,由于
弹簧变形恢复到粘壶的限制,应变随时间增加而逐渐减少。第四页,共二十九页。当时间经历无限长时,应变可以全部恢复。与虎克弹性体不同,尽管其变形可以完全恢复,kelvin元件的变形是时间历程的函数,我们把这样的变形特性称为延迟弹性。类似地,称变形恢复为蠕变恢复或延迟弹性恢复。第五页,共二十九页。2.将弹簧和粘壶串联,可得到如图4的Maxwell元件。在Maxwell元件承受应力时,弹簧和粘壶承受的应力相同,元件总变形等于弹簧和粘壶的变形之和。在零时刻,给元件施加一个恒定不变的应变,由于粘壶不能产生瞬时应变,应变发生于弹簧,此时的应力在零时刻应变完全由弹簧承担,随着时间历程的增加,粘壶逐渐变形,弹簧承担的应变减小导致元件承受的应力逐渐减小。当时间历程无限长时,应力趋向于零,变形完全由粘壶承担。我们把这种输入应变恒定不变、响应应力逐渐减小的力学行为称为应力松弛。第六页,共二十九页。应力松弛函数和蠕变数1.松弛函数
我们将足够多的单个松弛元件——Maxwell元件以图6的形式并联起来,得到一组广义Maxwell模型。广义的Maxwell模型各元件的变形相等,模型承受的应力为各元件承受的应力之和。可以得到此模型下的松弛应力第七页,共二十九页。记则上式是由广义的Maxwell模型积分得到的应力松弛条件下的本构方程。根据这一本构方程,类似于弹性模量的定义,上式中被称为松弛弹性模量;为恒定的常数,代表残余的松弛应力水平,通常称为静弹性模量;则称为松弛函数。第八页,共二十九页。的应力松弛曲线和松弛弹性模量曲线如图7松弛弹性模量第九页,共二十九页。普遍认为沥青路面材料的松弛弹性模量具有如下特点:在时间历程趋近于零时,松弛弹性模量具有极限值,一般称为极限弹性模量。根据极限弹性模量的定义,必须在极短的时间条件下测定,难度相当大。许多研究者采用量级进行测定,并以理论换算方式推算或更短时间条件下的松弛弹性模量来代表极限弹性模量。图7所示的时间被认为是材料力学行为由弹性向粘性转换的过度时间,并认为在相同的条件下,这一过渡时间越短,材料的应力松弛性能越好。第十页,共二十九页。2.蠕变函数类似于广义的Maxwell模型,我们可以把若干个Kelvin元件串联组合,得到被称为广义Kelvin模型的蠕变模型图8。在此蠕变模型中,各元件承受的应力相等,模型响应的总应变为各元件应变之和。有此模型可以得到蠕变应变的表达式如下记
第十一页,共二十九页。则记上式是由广义Kelvin模型积分得到的蠕变条件下的蠕变变形本构方程式。其中为蠕变柔量,为蠕变函数为瞬时弹性模量的倒数,称平衡蠕变柔量。积分型蠕变方程的蠕变、蠕变恢复和蠕变柔量如图9第十二页,共二十九页。积分型蠕变方程的蠕变、蠕变恢复和蠕变柔量如图9蠕变柔量第十三页,共二十九页。波尔兹曼叠加原理Bolztmann叠加原理是解决线性弹性行为的一种数学处理方式,它是描述不同时间加上不同荷载时材料的形变特性。
线性粘弹性行为:较小形变、较小应力的情况下,也就是在相当温和的条件下。在较大形变或较大应力下,材料内部已经发生了质变,Bolztmann叠加原理可能就不能适用了。第十四页,共二十九页。粘弹函数的线性叠加原理有前面的知识知,粘弹函数事实上可以分成蠕变函数和松弛函数两大类。在这两类函数间可以推导出许多有用的换算关系,从而揭示材料展现弹性力学行为的本质。但是,在这两类函数之间关系方面最重要的是以Boltzmann经验方法为基础发展起来的线性叠加原理。Boltzmann线性叠加原理由许多表现形式,这里介绍以蠕变积分方程和应力松弛积分方程为基础的推演方法。如图10所示,对于
所示的蠕变积分方程,在时刻t=0施加应力,则:第十五页,共二十九页。在时刻施加第二个应力增加量,相应的应变响应为:如果这两个应变可以叠加,那么第十六页,共二十九页。在更一般的情况下,在时刻,,…..,分别施加应力增量
…再有积分关系得:或对于应力松弛函数,类似地也可以得到:或第十七页,共二十九页。以上四个公式即是以蠕变积分方程和应力松弛积分方程推演得到的Boltzmann线性叠加原理表达式。以这种方式描述的Boltzmann线性叠加原理也称为应力或应变的履历积分。满足Boltzmann线性叠加原理的力学行为称为线粘弹性力学行为,呈现这种力学行为的材料称为线粘弹性材料。Boltzmann线性叠加原理应注意以下一些问题:1.Boltzmann线性叠加原理表明,材料在现时刻以前的应力、应变履历对现时刻的力学行为具有影响,现时刻后的力学响应式以往全部时间历程内力学行为影响的总和。第十八页,共二十九页。2.过去各时刻应力或应变履历对现时刻的应力或应变行为的影响可以简单可以简单地进行线性叠加,因此,尽管以上四个式子是由蠕变履历和应力松弛履历的积分方程式推演得到的,但是利用Boltzmann线性叠加原理,它们也可以分别用来计算任意应力输入方式或任意应变输入方式下的应变响应或应力响应,线粘弹性力学行为的研究由此变的相当简单。3.尽管上面四式是从负无穷开始积分的,所有的应力或应变履历都对现时刻的应力或应变行为产生影响,但是由于经历了相当长的时间,这些影响可能已经变得相当微弱。可以选择适当的时刻作为研究的零时刻,以上各式的积分下限也可以取为零。4.由上述四个线性叠加原理表达式,我们可以进一步推演两大函数之间换算关系得数学描述:第十九页,共二十九页。通过这样的换算关系,我们可以由某一类函数的测定结果计算得到另一类函数的力学特性。在工程研究中,有时也近似地假定尽管存在误差,这样的近似为工程研究提供了相当的方便。第二十页,共二十九页。二、时间温度换算法则时间温度换算的原理由于粘弹性材料的力学行为受到粘性分量的影响,粘性流动变形是时间的函数,因此这类材料的力学响应也为时间的函数。同样的,由于粘性材料的流动特性也是依赖于温度的函数,粘弹性材料的力学行为也和温度有关。现在我们来研究特征函数与温度之间的关系。
在沥青混合物这类材料的实验研究中,常常需要改变温度条件来测定材料的特征函数。在研究工作中不难发现,不同温度、不同时间条件下实验测定得到的特征函数曲线具有大致相同的形状。以图11中所示的松弛弹性模量实测曲线为例,在温度条件下分别第二十一页,共二十九页。得到图示的实测松弛弹性模量曲线和。如果将温度为时的测定曲线向左移动,不同温度下测得的松弛弹性模量曲线则将与曲线重合。类似地,也可以将曲线向左移动,同样可以得到两条曲线大致重叠。采用更一般的记法:上述的叠合关系可以记作:上式表明,粘弹性材料的特征函数既是时间的函数,也是温度的函数,在时间因子和温度因子之间存在一定的换算关系,这样的换算关系称为时间—温度换算法则。第二十二页,共二十九页。第二十三页,共二十九页。有了这样的换算方法,我们就可以将粘弹性力学中应力—应变—时间—温度的四维空间问题简化为应力—应变—时间或应力—应变——温度的三维空间问题。
换句话说,在粘弹性材料力学行为的数学空间中,时间和温度是可以互相代换的非独立变量。由于时间—温度可以互相换算,着为实验研究提供了极大的方便。特别是在沥青路面技术研究领域中,这一换算关系有着很重要的工程应用。第二十四页,共二十九页。WLF公式时间—温度换算法则最早是依赖于实验观测结果和经验方法建立起来的。那么是否能够找到它的一般数学关系,是否能在它的数学表现与所依据的理论之间建立必要的联系呢?1995年,由化学家M.L.Williams、R.F.Lanbel和J.D.Ferry共同提出了WLF公式:此式以无定型聚合物的玻璃态脆化点温度作为基准温度,在玻璃态脆化点处=1,=0。在WLF公式中确定=17.4,
=51.6。第二十五页,共二十九页。WLF公式是依赖于Dolittle公式及高于玻璃态脆化点时自由体积膨胀的假定建立的,它是一个半经验、半理论的公式。特别需要指出的是,只有在略微低于玻璃态脆化点的低温范围内才能使用这一公式进行时间—温度换算。WLF公式的使用温度范围为:并不是所有的高分子材料都满足上述的时间—温度换算法则,在粘弹性材料力学性能研究中,满足WLF公式、可以进行时间—温度换算的材料称为单纯流变物质。第二十六页,共二十九页。三、时间—温度换算的工程实例长大纵坡对沥青路面产生车辙的影响分析.caj第二十七页,共二十
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《生产准备》课件
- 二零二五年度综合性医院医疗设备采购及维护服务合同4篇
- 2025年度生物防治虫害技术集成服务合同范本4篇
- 郑州2025年度租房合同中的房屋结构安全保证2篇
- 2025年立柱广告牌广告资源整合与租赁合作合同4篇
- 《企业战略管理分析》课件
- 二零二五版现代农业租赁服务协议样本7篇
- 2025年度船舶安全监控系统维护与升级服务合同4篇
- 2025年度文化创意产业园入驻租赁合同书4篇
- 二零二五年度文化旅游项目零星小工程实施协议4篇
- 高二物理竞赛霍尔效应 课件
- 金融数学-(南京大学)
- 基于核心素养下的英语写作能力的培养策略
- 现场安全文明施工考核评分表
- 亚什兰版胶衣操作指南
- 四年级上册数学教案 6.1口算除法 人教版
- DB32-T 3129-2016适合机械化作业的单体钢架塑料大棚 技术规范-(高清现行)
- 6.农业产值与增加值核算统计报表制度(2020年)
- 人工挖孔桩施工监测监控措施
- 供应商物料质量问题赔偿协议(终端)
- 物理人教版(2019)必修第二册5.2运动的合成与分解(共19张ppt)
评论
0/150
提交评论