版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市阜平中学2023年高中毕业班第一次质量检测试题(模拟)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.() B.()C.() D.()2.已知向量,,若,则()A. B. C. D.3.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是()A. B. C. D.4.已知等差数列的前13项和为52,则()A.256 B.-256 C.32 D.-325.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.6.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是()A. B. C. D.7.已知,则,不可能满足的关系是()A. B. C. D.8.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤9.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.10.设函数,则,的大致图象大致是的()A. B.C. D.11.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A. B. C. D.12.抛物线的准线方程是,则实数()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,,则的值为________.14.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.15.我国古代数学著作《九章算术》中记载“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”设人数、物价分别为、,满足,则_____,_____.16.已知向量,,且,则实数m的值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.18.(12分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.19.(12分)已知函数.(1)求不等式的解集;(2)若存在实数,使得不等式成立,求实数的取值范围.20.(12分)一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元(1)求发酵池边长的范围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.21.(12分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.22.(10分)在直角坐标系中,已知圆,以原点为极点,x轴正半轴为极轴建立极坐标系,已知直线平分圆M的周长.(1)求圆M的半径和圆M的极坐标方程;(2)过原点作两条互相垂直的直线,其中与圆M交于O,A两点,与圆M交于O,B两点,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.【详解】依题意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值为.因为,所以().又,所以,所以,令(),则().因此,当取得最小值时,的单调递增区间是().故选:B【点睛】此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.2、A【解析】
利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,,,,解得.故选A.【点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.3、C【解析】
连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,,且,,解得椭圆的离心率.故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.4、A【解析】
利用等差数列的求和公式及等差数列的性质可以求得结果.【详解】由,,得.选A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.5、A【解析】
根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.6、A【解析】
先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,,解得,.因为为偶函数,故直线为其图象的对称轴,令,,故,,因为,故,当时,.故选:A.【点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题.7、C【解析】
根据即可得出,,根据,,即可判断出结果.【详解】∵;∴,;∴,,故正确;,故C错误;∵,故D正确故C.【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题8、B【解析】
依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果.【详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.9、B【解析】
分别作出各个选项中的函数的图象,根据图象观察可得结果.【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【点睛】本题考查函数单调性和值域的判断问题,属于基础题.10、B【解析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.11、A【解析】
先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.12、C【解析】
根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、11【解析】
由等差数列的下标和性质可得,由即可求出公差,即可求解;【详解】解:设等差数列的公差为,,又因为,解得故答案为:【点睛】本题考查等差数列的通项公式及等差数列的性质的应用,属于基础题.14、【解析】
设直线l的方程为,,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程【详解】设直线.由题设得,故,由题设可得.
由可得,
则,从而,得,所以l的方程为,故答案为:【点睛】本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.15、【解析】
利用已知条件,通过求解方程组即可得到结果.【详解】设人数、物价分别为、,满足,解得,.故答案为:;.【点睛】本题考查函数与方程的应用,方程组的求解,考查计算能力,属于基础题.16、1【解析】
根据即可得出,从而求出m的值.【详解】解:∵;∴;∴m=1.故答案为:1.【点睛】本题考查向量垂直的充要条件,向量数量积的坐标运算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,(2)最小正整数的值为35.【解析】
(1)由等差中项可知,当时,得,整理后可得,从而证明为等差数列,继而可求.(2),则可求出,令,即可求出的取值范围,进而求出最小值.【详解】解析:(1)由题意可得,当时,,∴,,当时,,整理可得,∴是首项为1,公差为1的等差数列,∴,.(2)由(1)可得,∴,解得,∴最小正整数的值为35.【点睛】本题考查了等差中项,考查了等差数列的定义,考查了与的关系,考查了裂项相消求和.当已知有与的递推关系时,常代入进行整理.证明数列是等差数列时,一般借助数列,即后一项与前一项的差为常数.18、(1)证明见解析;(2)证明见解析;【解析】
(1)推导出,由是的中点,能证明是有中点.(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面.【详解】证明:(1)在三棱锥中,平面,平面平面,平面,,在中,是的中点,是有中点.(2)在三棱锥中,是锐角三角形,在中,可作于点,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【点睛】本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.19、(1);(2).【解析】
(1)将函数的解析式表示为分段函数,然后分、、三段求解不等式,综合可得出不等式的解集;(2)求出函数的最大值,由题意得出,解此不等式即可得出实数的取值范围.【详解】.(1)当时,由,解得,此时;当时,由,解得,此时;当时,由,解得,此时.综上所述,不等式的解集;(2)当时,函数单调递增,则;当时,函数单调递减,则,即;当时,函数单调递减,则.综上所述,函数的最大值为,由题知,,解得.因此,实数的取值范围是.【点睛】本题考查含绝对值不等式的求解,同时也考查了绝对值不等式中的参数问题,考查分类讨论思想的应用,考查运算求解能力,属于中等题.20、(1)(2)当时,,米时,发酵馆的占地面积最小;当时,时,发酵馆的占地面积最小;当时,米时,发酵馆的占地面积最小.【解析】
(1)设米,总费用为,解即可得解;(2)结合(1)可得占地面积结合导函数分类讨论即可求得最值.【详解】(1)由题意知:矩形面积米,设米,则米,由题意知:,得,设总费用为,则,解得:,又,故,所以发酵池边长的范围是不小于15米,且不超过25米;(2)设发酵馆的占地面积为由(1)知:,①时,,在上递增,则,即米时,发酵馆的占地面积最小;②时,,在上递减,则,即米时,发酵馆的占地面积最小;③时,时,,递减;时,递增,因此,即时,发酵馆的占地面积最小;综上所述:当时,,米时,发酵馆的占地面积最小;当时,时,发酵馆的占地面积最小;当时,米时,发酵馆的占地面积最小.【点睛】此题考查函数模型的应用,关键在于根据题意恰当地建立模型,利用函数性质讨论最值取得的情况.21、(1)(2)【解析】
(1)利用零点分段法将表示为分段函数的形式,由此求得不等式的解集.(2)对分成三种情况,求得的最小值,由此求得的取值范围.【详解】(1)当时,,由此可知,的解集为(2)当时,的最小值为和中的最小值,其中,.所以恒成立.当时,,且,不恒成立,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋建筑实习报告锦集5篇
- 学生撒谎检讨书15篇
- 教育目的心得模板10篇
- 产科护士工作心得体会8篇
- 疾病查房-帕金森病(护理类)课件
- 海事处廉政教育月党课
- 七年级信息技术教案
- 七年级美术的说课稿10篇
- 浙江省绍兴市职业教育中心2024-2025学年高一上学期期中考试中国特色社会主义试题
- 借款协议书(2篇)
- MOOC 心理健康与创新能力-电子科技大学 中国大学慕课答案
- 黄蒿界矿井及选煤厂建设项目环境影响报告书
- MOOC 数字电路分析与设计-浙江大学 中国大学慕课答案
- 感动中国人物张桂梅心得体会(30篇)
- 2024年云南昆明市公安局文职辅警招聘笔试参考题库附带答案详解
- 采购计划员年终工作总结
- 技术总监年度述职报告
- 第十四章出口管制课件
- 常用井下工具原理与用途课件
- 广东省东莞市2023-2024学年高一上学期期末生物试题
- 脑病科中医健康宣教课件
评论
0/150
提交评论