R软件应用多元分析_第1页
R软件应用多元分析_第2页
R软件应用多元分析_第3页
R软件应用多元分析_第4页
R软件应用多元分析_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.应用多元分析安徽师范大学数学计算机科学学院丁新涛目前一页\总数五十三页\编于十六点8.1判别法则(分类)已知有多少类,并且在训练样本的前提下,利用训练样本得到判别函数,对待测样本进行分类;8.1.1距离判别判别问题,就是将p维欧几里得空间Rp划分成k个互不相交的区域R1,R2,…,Rk。若x∈Ri,i=1,2,…,k,则判定x属于总体Xi,i=1,2,…,k.Mahalanobis距离的概念:定义8.1设x,y是从均值为μ,协方差矩阵为Σ的总体X中抽取的两个样本,则总体X内两点x,y的Mahalanobis距离定义为样本x与总体X的Mahalanobis距离为:目前二页\总数五十三页\编于十六点例如:=1.661.662.34从欧氏距离看A到μ1的距离比到μ2的距离要近,但从概率分布的角度看,,说明A到μ2的距离比到μ1的距离要近.标准化Mahalanobis距离符合概率分布内涵.目前三页\总数五十三页\编于十六点2.判别准则与判别函数2.1两个总体的距离判定.总体X1,X2的均值向量分别为μ1,μ2,协方差分别为Σ1,Σ2,给定样本x,判断x来自哪一个总体.1.μ1≠μ2,

Σ1=Σ2判断准则:判断准则:目前四页\总数五十三页\编于十六点总体的均值与协方差未知时:设是来自总体X1的n1个样本,是来自总体X2的n2个样本,则样本的均值与协方差阵为判断准则:目前五页\总数五十三页\编于十六点1.μ1≠μ2,

Σ1≠Σ2判断函数:总体的均值与协方差未知时:总体的均值与协方差已知时:MahalanobisDistanceReturnsthesquaredMahalanobisdistanceofallrowsinxandthevectormu=centerwithrespecttoSigma=cov.Thisis(forvectorx)definedasD^2=(x-μ)'Σ^-1(x-μ)Usage:mahalanobis(x,center,cov,inverted=FALSE,...)X:vectorormatrixofdatawith,say,pcolumns.

Center:meanvectorofthedistributionorseconddatavectoroflengthp.Cov:covariancematrix(pxp)ofthedistribution.目前六页\总数五十三页\编于十六点R程序discriminiant.distance<-function(TrnX1,TrnX2,TstX=NULL,var.equal=FALSE)

{if(is.null(TstX)==TRUE)TstX<-rbind(TrnX1,TrnX2)if(is.vector(TstX)==TRUE)TstX<-t(as.matrix(TstX))elseif(is.matrix(TstX)!=TRUE)TstX<-as.matrix(TstX)if(is.matrix(TrnX1)!=TRUE)TrnX1<-as.matrix(TrnX1)if(is.matrix(TrnX2)!=TRUE)TrnX2<-as.matrix(TrnX2)nx<-nrow(TstX)#测定待测样本的个数blong<-matrix(rep(0,nx),

nrow=1,byrow=TRUE,dimnames=list(“blong”,1:nx))#产生一个行矩阵,共nx个数mu1<-colMeans(TrnX1);mu2<-colMeans(TrnX2)if(var.equal==TRUE||var.equal==T){S<-var(rbind(TrnX1,TrnX2))w<-mahalanobis(TstX,mu2,S)-mahalanobis(TstX,mu1,S)}else

{S1<-var(TrnX1);S2<-var(TrnX2)w<-mahalanobis(TstX,mu2,S2)-mahalanobis(TstX,mu1,S1)}for(iin1:nx){if(w[i]>0)blong[i]<-1elseblong[i]<-2}blong}#X1,X2类的训练样本#TstX=NULL待测样本为2个训练样本之和#数据全部转化成矩阵,行表示样本个数,列表示样本维数n#根据第i个样本的wi值,返回样本类别结果理论中的样本按列排列X=(X1,X2,…,Xn),每列是一个样本,n列表示n个样本,这里样本按行排X=(X1,X2,…,Xn)T目前七页\总数五十三页\编于十六点4.判别实例例8.1在研究砂基液化问题中,选了7个因子,今从已液化和未液化的地层中分别抽了12个和23个样本,数据列在表中,其中I类表示已液化类,II类表示未液化类。试建立距离判别的判别准则,并按判别准则对原35个样本进行回代(即按判别准则进行分类),分析误判情况。编号类别x1x2x3x4x5x6x71I6.6391660.12202I6.63916120.12203I6.1471660.08124I6.14716120.08125I8.43227.5190.35756I7.2617280.3307I8.41133.56180.15758I7.55216120.16409I7.5523.57.560.164010I8.311307.5350.1218011I7.817213.5140.214512I7.81721.53150.214513II8.4321540.357514II8.43229100.357515II8.4322.54100.357516II6.3114.57.530.21517II784.54.590.253018II7867.540.253019II781.5610.253020II8.31611.5440.087021II8.31610.52.510.087022II7.263.54120.33023II7.261330.33024II7.261650.33025II5.562.5370.181826II8.41133.54.560.157527II8.41133.54.580.157528II7.5521660.164029II7.55217.580.164030II8.3970650.1518031II8.3972.5650.1518032II8.38906100.1618033II8.3561.56130.2518034II7.817213.560.214535II7.828314.560.1845#R里的数据就是这样排,样本均值是对每个指标按列求均值,然后组成样本均值目前八页\总数五十三页\编于十六点R实现:classx1=read.table('dataexample801x1.txt')classx2=read.table('dataexample801x2.txt')discriminiant.distance(classx1,classx2,var.equal=T)

123456789101112131415161718192021222324252611111111211122222222222222272829303132333435blong211222222blong#在认为两个总体协方差相同的情况下,有3个点判错discriminiant.distance(classx1,classx2)

123456789101112131415161718192021222324252611111111211122222222222222272829303132333435blong222222222blong#在认为两个总体协方差不同的情况下,有1个点判错目前九页\总数五十三页\编于十六点5.多分类问题的距离判别μ1≠μ2…≠μk,

Σ1=Σ2…=Σ

k相应的判别准则:distinguish.distance<-function(TrnX,TrnG,TstX=NULL,var.equal=FALSE){if(is.factor(TrnG)==FALSE){mx<-nrow(TrnX);mg<-nrow(TrnG)TrnX<-rbind(TrnX,TrnG)TrnG<-factor(rep(1:2,c(mx,mg)))}if(is.null(TstX)==TRUE)TstX<-TrnX

#如果待测样本为空,则将训练样本视为待测样本if(is.vector(TstX)==TRUE)TstX<-t(as.matrix(TstX))

elseif(is.matrix(TstX)!=TRUE)

#待测样本是多样本,但不是矩阵形式时TstX<-as.matrix(TstX)#转成矩阵(如data.frame类型转成矩阵)if(is.matrix(TrnX)!=TRUE)TrnX<-as.matrix(TrnX)nx<-nrow(TstX)blong<-matrix(rep(0,nx),nrow=1,dimnames=list(“blong”,1:nx))#本页语句都是准备工作#如果TrnG从主函数未接收到因子数据#待测样本TstX是单样本时候,是向量vector,此时将其转为矩阵(是列矩阵),然后再转成行矩阵#则是2分类问题,而非多分类,可省略#行名称为”blong”,列名称为数字1到nx#产生类别矩阵blong,初始值全为0目前十页\总数五十三页\编于十六点Continue:g<-length(levels(TrnG))mu<-matrix(0,nrow=g,ncol=ncol(TrnX))

for(iin1:g)mu[i,]<-colMeans(TrnX[TrnG==i,])

D<-matrix(0,nrow=g,ncol=nx)#ncol个样本因子按列排,g个类别按行排#对属于第i个类的样本求他们因子的均值,结果存到mu的第i行#产生0阵,行数为类别数g,列数为样本数nx#得到多分类的类别,共g个:[1]2[,1][,2][,3][,4][,5][,6][,7][1,]0000000[2,]0000000[,1][,2][,3][,4][,5][,6][,7][1,]7.35833373.666671.4583336.0000015.2500000.171666749.50000[2,]7.68695769.608702.0434785.239136.3478260.215652270.34783

[,1][,2][,3][,4][,5][,6][,7][,8][,9][,10][,11][,12][,13][1,]0000000000000[2,]0000000000000[,26][,27][,28][,29][,30][,31][,32][,33][,34][,35][1,]0000000000[2,]0000000000目前十一页\总数五十三页\编于十六点Continue:if(var.equal==TRUE||var.equal==T){for(iin1:g)D[i,]<-mahalanobis(TstX,mu[i,],var(TrnX))}else{for(iin1:g)D[i,]<-mahalanobis(TstX,mu[i,],var(TrnX[TrnG==i,]))}for(jin1:nx){dmin<-Inffor(iin1:g)if(D[i,j]<dmin){dmin<-D[i,j];blong[j]<-i}}blong#待测样本到第i类的马氏距离

[,1][,2][,3][,4][,5][,6][,7][,8][1,]181.3889182.5306162.9359164.1592233.7561205.8525238.8812214.1178[2,]181.3889182.5306162.9359164.1592233.7561205.8525238.8812214.1178[,9][,10][,11][,12][,13][,14][,15][,16][1,]219.4913201.6875185.8174184.6754222.2703241.7303218.1065169.8246[2,]219.4913201.6875185.8174184.6754222.2703241.7303218.1065169.8246[,17][,18][,19][,20][,21][,22][,23][,24][1,]182.1071197.3248186.0215224.1768221.5524185.4759183.1583192.0052[2,]182.1071197.3248186.0215224.1768221.5524185.4759183.1583192.0052[,25][,26][,27][,28][,29][,30][,31][,32][1,]114.8461229.1703229.5824213.1659220.9516181.5381180.7470181.3109[2,]114.8461229.1703229.5824213.1659220.9516181.5381180.7470181.3109[,33][,34][,35][1,]175.8290184.0261181.7853[2,]175.8290184.0261181.7853#对第j个样本,纵向求min,如果该最小值位于第i行,则第j个样本就是属于第i类方差未知方差已知目前十二页\总数五十三页\编于十六点8.1.2Bayes判别1.误判概率与误判损失x被判为X2x实际来自X1来自X2,但被判为x1的概率:来自X1,但被判为x2的概率:来自X1,但被判为x1的概率:来自X2,但被判为x2的概率:总体X1的先验概率平均误判损失ECM:ECM(R1,R2)=L(2|1)P(2|1)p1+L(1|2)P(1|2)p2来自X1被判为X2引起的损失来自X2被判为X1引起的损失目前十三页\总数五十三页\编于十六点2.两个总体的Bayes判别ECM(R1,R2)=L(2|1)P(2|1)p1+L(1|2)P(1|2)p20ECM=min划分区域R1和R2:作为Bayes判别准则须计算目前十四页\总数五十三页\编于十六点正态分布的情况:Xi~N(μi,∑i)(i=1,2)1.∑1=∑2类似地,2.∑1≠∑2目前十五页\总数五十三页\编于十六点3.R程序与例子R程序略;例8.3下表是某气象站预报有无春旱的实际资料,x1与x2是综合预报因子,有春旱的是6个年份的资料,无春旱的是8个年份的资料,它们的先验概率分别用6/14和8/14来估计,并假设误判损失相等,试用Bayes估计对数据进行分析。序号春旱无春旱124.8-222.1-0.7224.1-2.421.6-1.4326.6-322-0.8423.5-1.922.8-1.6525.5-2.122.7-1.5627.4-3.121.5-1722.1-1.2821.4-1.3目前十六页\总数五十三页\编于十六点R实现x1=scan('dataexample803x1.txt')x2=scan('dataexample803x2.txt')dim(x1)=c(2,6)[,1][,2][,3][,4][,5][,6][1,]24.824.126.623.525.527.4[2,]-2.0-2.4-3.0-1.9-2.1-3.1dim(x2)=c(2,8)x1=t(x1)x2=t(x2)source('discriminiant.bayes.R')discriminiant.bayes(x1,x2,rate=8/6,var.equal=T)

[,1][,2][1,]24.823.5[2,]-2.0-1.9[3,]24.125.5[4,]-2.4-2.1[5,]26.627.4[6,]-3.0-3.1

1234567891011121314blong11121122222222#4号样本被错判discriminiant.bayes(x1,x2,rate=8/6)

1234567891011121314blong11111122222222#无错判目前十七页\总数五十三页\编于十六点4.多分类问题的Bayes判别样本共分k类:X1,X2,…,Xk,相应的先验概率为p1,p2,…,pk,假定所有的错判损失相同,则判别准则为:1.∑1=…=∑k=∑2.∑1≠…≠

∑k目前十八页\总数五十三页\编于十六点R程序……if(var.equal==TRUE||var.equal==T){for(iin1:g){d2<-mahalanobis(TstX,mu[i,],var(TrnX))D[i,]<-d2-2*log(p[i])}}else{for(iin1:g){S<-var(TrnX[TrnG==i,])d2<-mahalanobis(TstX,mu[i,],S)D[i,]<-d2-2*log(p[i])-log(det(S))}}for(jin1:nx){dmin<-Inffor(iin1:g)if(D[i,j]<dmin){dmin<-D[i,j];blong[j]<-i}}blong}目前十九页\总数五十三页\编于十六点例8.4用Bayes判别对FisherIris数据进行分析.假设先验概率相同,均为1.考虑总体协方差阵不同的情况.x=iris[,1:4]g=gl(3,50)distinguish.bayes(x,g)

123456789101112131415161718192021222324252627blong111111111111111111111111111282930313233343536373839404142434445464748495051blong111111111111111111111112525354555657585960616263646566676869707172737475blong222222222222222223232322767778798081828384858687888990919293949596979899blong223222223222222222222222100101102103104105106107108109110111112113114115116117blong233333333333333333118119120121122123124125126127128129130131132133134135blong333333333333333333136137138139140141142143144145146147148149150blong333333333333333#误判概率为1-145/150=3.33%目前二十页\总数五十三页\编于十六点8.1.3Fisher判别按类内方差尽量小,类间方差尽量大的准则求判别函数.(以2个总体为例)判别准则总体X1,X2的均值与协方差阵分别为μ1,μ2和Σ1,Σ2,对于样本x,考虑其判别函数:判别准则为:U(x)=?目前二十一页\总数五十三页\编于十六点2.线性判别函数中系数的确定u(x)为线性函数设总体X1,X2的样本容量为n1,n2;则u1,u2和σ1,σ

2的估计:目前二十二页\总数五十三页\编于十六点确定判别函数

若:进一步:判别准则为:目前二十三页\总数五十三页\编于十六点4.R程序与例子例8.5用Fisher判别解例8.1classx1=read.table('dataexample801x1.txt')classx2=read.table('dataexample801x2.txt')discriminiant.fisher(classx1,classx2)结果:

1234567891011121314151617181920212223242526blong111111111111222222222222222728

29303132333435blong211222222#28,29号样本为误判样本R程序…

mu1<-colMeans(TrnX1);mu2<-colMeans(TrnX2)

S<-(n1-1)*var(TrnX1)+(n2-1)*var(TrnX2)

mu<-n1/(n1+n2)*mu1+n2/(n1+n2)*mu2w<-(TstX-rep(1,nx)%o%mu)%*%solve(S,mu2-mu1);…目前二十四页\总数五十三页\编于十六点8.2聚类分析[7]常用的几种距离:第2个样本与第n个样本之间的距离记为d2nordn28.2.1距离和相似系数绝对值距离or“棋盘距离”or“城市街区”距离Euclid(欧几里得)距离Minkowski(闵可夫斯基)距离目前二十五页\总数五十三页\编于十六点continueChebyshev(切比雪夫)距离Mahalanobis距离为:Lance和Williams距离定性变量样本间的距离第i个样本记为:项目项目的类目数样本x(1)x(2)性别

外语 专业 职业男 女英 日德俄 统计会计金融教师 工程师1010000010101100010010类目目前二十六页\总数五十三页\编于十六点Continue:样本x(1)x(2)性别 外语 专业 职业男 女英 日德俄 统计会计金融教师 工程师10100000101011000100101-1配对0-0配对不配对第i个样本和第j个样本在第k个项目的第l类上1-1配对第i个样本和第j个样本在第k个项目的第l类上0-0配对第i个样本和第j个样本在第k个项目的第l类上不配对0-0配对数1-1配对数不配对数表中的样本距离d12=6/7=0.8571429目前二十七页\总数五十三页\编于十六点R中的距离函数Usagedist(x,method="euclidean",diag=FALSE,upper=FALSE,p=2)DescriptionThisfunctioncomputesandreturnsthedistancematrixcomputedbyusingthespecifieddistancemeasuretocomputethedistancesbetweentherowsofadatamatrix.x:anumericmatrix,dataframeor"dist"object.method:thedistancemeasuretobeused.Thismustbeoneof"euclidean","maximum","manhattan","canberra","binary"or"minkowski".Anyunambiguoussubstringcanbegiven.Euclidean:euclid距离Maximum:chebyshev距离Manhattan:绝对值距离Canberra:lance距离Binary:定性变量的距离Minkowski:minkowski距离目前二十八页\总数五十三页\编于十六点2.数据中心化与标准化表示因素表示样本对第i个样本中心化,标准化目前二十九页\总数五十三页\编于十六点(1)极差标准化.对第i个样本极差标准化,正规化x=data.frame(x1=c(1,2),x2=c(1,2),x3=c(1,2),x4=c(1,2))x1x2x3x41111122222ap=apply(x,2,mean)x1x2x3x41.51.51.51.5center=sweep(x,2,ap)r=apply(x,2,max)-apply(x,2,min)x_star=sweep(center,2,r,'/')x_star=sweep(center,2,sd(x),'/')>rx1x2x3x41111>centerx1x2x3x41-0.5-0.5-0.5-0.520.50.50.50.5>x_starx1x2x3x41-0.5-0.5-0.5-0.520.50.50.50.5>x_starx1x2x3x41-0.7071068-0.7071068-0.7071068-0.707106820.70710680.70710680.70710680.7071068#普通标准化目前三十页\总数五十三页\编于十六点continue(2)极差正规化变换.x=data.frame(x1=c(1,2),x2=c(1,2),x3=c(1,2),x4=c(1,2))x1x2x3x41111122222ap=apply(x,2,min)x1x2x3x41111center=sweep(x,2,ap)r=apply(x,2,max)-apply(x,2,min)x_star=sweep(center,2,r,'/')>rx1x2x3x41111>centerx1x2x3x41000021111>x_starx1x2x3x41000021111目前三十一页\总数五十三页\编于十六点3.相似系数相似系数用于对变量进行分类。夹角余弦Xi与Xj的夹角余弦称为两向量的相似系数x=data.frame(x1=c(1,2),x2=c(1,2),x3=c(1,2),x4=c(1,2))y=scale(x,center=F,scale=T)/sqrt(nrow(x)-1)x1x2x3x4[1,]0.44721360.44721360.44721360.4472136[2,]0.89442720.89442720.89442720.8944272c=t(y)%*%y将样本列(变量)标准化目前三十二页\总数五十三页\编于十六点相关系数中心化样本(变量)的相关矩阵R实现:cor(x)目前三十三页\总数五十三页\编于十六点8.2.2系统聚类法记号:dij:第i个样本与第j个样本的距离.G1,G2:表示类.DKL:GK与GL的(类)距离.最短距离法类与类之间的距离为两类最近样本间的距离:当某步骤类GK和GL合并为GM后,按最短距离法计算新类GM与其他类GJ的类间距离:最长距离法递推公式目前三十四页\总数五十三页\编于十六点中间距离法推广:类平均法可变类平均法:类GK的样本个数Mcquitty相似分析递推公式目前三十五页\总数五十三页\编于十六点类与类之间的距离定义为他们重心(均值)之间的Euclid距离.设GK和GL的重心分别为和.重心法递推公式离差平方和法(ward方法)递推公式GK和GL的平方距离也可定义为:与重心法相差一个系数,表明表明大样本类不易合并,这更符合实际。目前三十六页\总数五十三页\编于十六点7.R相关函数及其用法Usagehclust(d,method="complete",members=NULL)DescriptionHierarchicalclusteranalysisonasetofdissimilaritiesandmethodsforanalyzingit.d:adissimilaritystructureasproducedbydist.method:"ward","single","complete","average","mcquitty","median"or"centroid".例8.6设有5个样本,每个样本只有一个指标,分别是1,2,6,8,11,样本间的距离选用Euclid距离,试用最短距离法、最长距离法等方法进行聚类分析,并画出相应的谱系图.R实现:x=c(1,2,6,8,11)dim(x)=c(5,1)d=dist(x)>d

1234213544762510953第一个样本到第2,3,4,5个样本的距离目前三十七页\总数五十三页\编于十六点例8.6(续)hc1=hclust(d,'single')hc2=hclust(d,'complete')hc3=hclust(d,'median')hc4=hclust(d,'mcquitty')hc5=hclust(d,'average')hc6=hclust(d,'centroid')hc7=hclust(d,'ward')opar=par(mfrow=c(3,3))plot(hc1,hang=-1)plot(hc2,hang=-1)plot(hc3,hang=-1)plot(hc4,hang=-1)plot(hc5,hang=-1)plot(hc6,hang=-1)plot(hc7,hang=-1)目前三十八页\总数五十三页\编于十六点例8.7对305名女中学生测量8个体型指标,相应的相关矩阵如表,将相关系数看成相似系数,定义距离为dij=1-rij,用最长距离法做系统分析.身高手臂长上肢长下肢长体重颈围胸围胸宽x1x2x3x4x5x6x7x8x11x20.8461x30.8050.8811x40.8590.8260.8011x50.4730.3760.380.4361x60.3980.3260.3190.3290.7621x70.3010.2770.2370.3270.730.5831x80.3820.2770.3450.3650.6290.5770.5391目前三十九页\总数五十三页\编于十六点R实现x=scan('dataexample807.txt')r=as.matrix(x)dim(r)=c(8,8)d=as.dist(1-r)hc=hclust(d)plot(hc,hang=-1)>d123456720.15430.1950.11940.1410.1740.19950.5270.6240.6200.56460.6020.6740.6810.6710.23870.6990.7230.7630.6730.2700.41780.6180.7230.6550.6350.3710.4230.461目前四十页\总数五十三页\编于十六点8.类个数的确定给定一个阈值.观测样本的散点图.(仅限于二维,三维样本)试用统计量.根据谱系图确定分类个数的原则:A.各类重心的距离必须很大.B.确定的类中,各类所包含的元素都不要太多.C.类的个数必须符合实用的目的.D.若采用不同的聚类方法处理,则在各自的聚类图中应发现相同的类.Usagerect.hclust(tree,k=NULL,which=NULL,x=NULL,h=NULL,border=2,cluster=NULL)DescriptionDrawsrectanglesaroundthebranchesofadendrogramhighlightingthecorrespondingclusters.Tree是由hclust生成的对象;K是类的个数;H是谱系图中的阈值;目前四十一页\总数五十三页\编于十六点Rect.hclust()实例(8.7)目前四十二页\总数五十三页\编于十六点9.实例表中给出了1999年全国31个省,市,自治区的城镇居民家庭平均每人全年消费性支出的8个主要指标(变量)数据.这8个变量是:x1:食品;x2:衣着;x3:家庭设备用品及服务;x4:医疗保障;x5:交通与通信;x6:娱乐教育文化服务;x7:居住;x8:杂项商品和服务;分别使用最长距离法,类平均法,重心法和ward方法对各地区做聚类分析.x1x2x3x4x5x6x7x8北京2959.19730.79749.41513.34467.871141.82478.42457.64天津2459.77495.47697.33302.87284.19735.97570.84305.08河北1495.63515.9362.37285.32272.95540.58364.91188.63山西1046.33477.77290.15208.57201.5414.72281.84212.1内蒙1303.97524.29254.83192.17249.81463.09287.87192.96辽宁1730.84553.9246.91279.81239.18445.2330.24163.86吉林1561.86492.42200.49218.36220.69459.62360.48147.76黑龙江1410.11510.71211.88277.11224.65376.82317.61152.85上海3712.31550.74893.37346.935271034.98720.33462.03浙江2629.16557.32689.73435.69514.66795.87575.76323.36安徽1844.78430.29271.28126.33250.56513.18314151.39福建2709.46428.11334.12160.77405.14461.67525.13232.29江西1563.78303.65233.81107.9209.7393.99509.39160.12目前四十三页\总数五十三页\编于十六点continue山东1675.75613.32550.71219.79272.59599.43371.62211.84河南1427.65431.79288.55208.14217337.76421.31165.32湖北1783.43511.88282.84201.01237.6617.74523.52182.52湖南1942.23512.27401.39206.06321.29697.22492.6226.45广东3055.17353.23564.56356.27811.88873.061082.82420.81广西2033.87300.82338.65157.78329.06621.74587.02218.27海南2057.86186.44202.72171.79329.65477.17312.93279.19重庆2303.29589.99516.21236.55403.92730.05438.41225.8四川1974.28507.76344.79203.21240.24575.1430.36223.46贵州1673.82437.75461.61153.32254.66445.59346.11191.48云南2194.25537.01369.07249.54290.84561.91407.7330.95西藏2646.61839.7204.44209.11379.3371.04269.59389.33陕西1472.95390.89447.95259.51230.61490.9469.1191.34甘肃1525.57472.98328.9219.86206.65449.69249.66228.19青海1654.69437.77258.78303244.93479.53288.56236.51宁夏1375.46480.99273.84317.32251.08424.75228.73

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论