广东省江门市恩平华侨中学高一数学理联考试题含解析_第1页
广东省江门市恩平华侨中学高一数学理联考试题含解析_第2页
广东省江门市恩平华侨中学高一数学理联考试题含解析_第3页
广东省江门市恩平华侨中学高一数学理联考试题含解析_第4页
广东省江门市恩平华侨中学高一数学理联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省江门市恩平华侨中学高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.甲乙两位同学进行乒乓球比赛,甲获胜的概率为0.4,现采用随机模拟的方法估计这两位同学打3局比赛甲恰好获胜2局的概率:先利用计算器产生0到9之间取整数值的随机数,制定1,2,3,4表示甲获胜,用5,6,7,8,9,0表示乙获胜,再以每三个随机数为一组,代表3局比赛的结果,经随机模拟产生了30组随机数102

231

146

027

590

763

245

207

310

386

350

481

337

286

139579

684

487

370

175

772

235

246

487

569

047

008

341

287

114据此估计,这两位同学打3局比赛甲恰好获胜2局的概率为()A. B. C. D.参考答案:B【考点】模拟方法估计概率.【分析】由题意知模拟打3局比赛甲恰好获胜2局的结果,经随机模拟产生了如下30组随机数,在30组随机数中表示打3局比赛甲恰好获胜2局的有可以通过列举得到共9组随机数,根据概率公式,得到结果.【解答】解:由题意知模拟打3局比赛甲恰好获胜2局的结果,经随机模拟产生了如下20组随机数,在30组随机数中表示打3局比赛甲恰好获胜2局的有:102,146,245,310,481,337,139,235,246,共9组随机数,∴所求概率为=.故选B.2.给出如下四个函数:①;②;③,b,c为常数;④.其中最小正周期一定为π的函数个数为(

)A.0 B.1 C.2 D.3参考答案:B【分析】将表达式化简,周期.【详解】周期为.周期为;对,当时,易知不恒成立,周期为;因此仅有满足.故选:B【点睛】此题考查三角函数的化简,熟记和差公式和两个基本公式即可,另外求最小正周期的前提是函数是周期函数,属于较易题目。3.且则的值是(

参考答案:C4.下列三个命题,其中正确的有

(

)①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余各面都是等腰梯形的六面体是棱台.A.0个

B.1个

C.2个

D.3个参考答案:A5.已知函数f(x)=.若f(﹣a)+f(a)≤2f(1),则a的取值范围是()A.[﹣1,0) B.[0,1] C.[﹣1,1] D.[﹣2,2]参考答案:C【考点】分段函数的应用.【分析】根据a的取值范围,把不等式f(﹣a)+f(a)≤2f(1)转化为不等式组求解,最后取并集得答案.【解答】解:由,则不等式f(﹣a)+f(a)≤2f(1)等价于:或即①或②解①得:0≤a≤1;解②得:﹣1≤a<0.∴a的取值范围是[﹣1,1].故选:C.6.为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是()A.12 B.9 C.8 D.6参考答案:B【考点】模拟方法估计概率.【分析】设阴影部分的面积为S,根据题意,可得向正方形内随机投掷一点,其落到阴影部分的概率P=;,又由几何概型可得P=,可得=,解可得答案.【解答】解:根据题意,设阴影部分的面积为S,则正方形的面积为36,向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,则向正方形内随机投掷一点,其落到阴影部分的概率P==;而P=,则=,解可得,S=9;故选B.7.设全集U={1,2,3,4,5,6},A={2,4,6}则CUA=(

)A.{1,3,5,6} B.{1,3,5} C.{2,3,4} D.{1,2,3,5}参考答案:B【考点】补集及其运算.【专题】计算题;定义法;集合.【分析】由A与全集U,求出A的补集即可.【解答】解:∵全集U={1,2,3,4,5,6},A={2,4,6},∴?UA={1,3,5},故选:B.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.8.下列函数中,在其定义域内是增函数而且又是奇函数的是()A.y=x+ B.y=2x﹣2﹣x C.y=log2|x| D.y=2x+2﹣x参考答案:B【考点】奇偶性与单调性的综合.【分析】对4个选项,分别进行判断,即可得出结论.【解答】解:对于A,是奇函数,在定义域内不是增函数,不正确;对于B,在其定义域内是增函数而且又是奇函数,正确;对于C,是偶函数,不正确;对于D,在其定义域内是偶函数,不是增函数,不正确;故选B.9.下列函数中,既不是奇函数也不是偶函数的是(

)A. B. C. D.参考答案:D【分析】利用奇函数偶函数的判定方法逐一判断得解.【详解】A.函数的定义域为R,关于原点对称,,所以函数是偶函数;B.函数的定义域为,关于原点对称.,所以函数是奇函数;C.函数的定义域为R,关于原点对称,,所以函数是偶函数;D.函数的定义域为R,关于原点对称,,,所以函数既不是奇函数,也不是偶函数.故选:D【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对该知识的理解掌握水平,属于基础题.10.已知函数与图像上存在关于y轴对称的点,则a的取值范围是(

).A.

B.

C.

D.参考答案:A

二、填空题:本大题共7小题,每小题4分,共28分11.设是实数,则的最小值是

参考答案:略12.函数y=tanx+sinx-|tanx-sinx|在区间内的图象是________.(只填相应序号)参考答案:④

略13.甲,乙两人在相同条件下练习射击,每人打发子弹,命中环数如下甲

6

8

9

9

8乙

10

7

7

7

9则两人射击成绩的稳定程度是__________________

参考答案:

甲稳定略14.计算=

参考答案:1215.在△ABC中,设AD为BC边上的高,且AD=BC,b,c分别表示角B,C所对的边长,则的取值范围是____________.参考答案:16.已知,,则__________.参考答案:分析:先根据条件解出再根据两角和正弦公式化简求结果.详解:因为,,所以,因此点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.17.=

.参考答案:1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知集合A={x|2x﹣3≥x﹣2},不等式log2(x+1)<2的解集为B,求A∪B,(?RA)∩B.参考答案:【考点】交、并、补集的混合运算.【分析】求出不等式log2(x+1)<2的解集B,化简集合A,再根据集合的定义求出A∪B与?RA、(?RA)∩B.【解答】解:不等式log2(x+1)<2等价于0<x+1<4,解得﹣1<x<3,所以B=(﹣1,3);…又因为A={x|2x﹣3≥x﹣2}={x|x≥1}=[1,+∞),所以A∪B=(﹣1,+∞);…因为?RA=(﹣∞,1),所以(?RA)∩B=(﹣1,1).…19.设a∈R,函数f(x)=x|x﹣a|+2x.(1)若a=3,求函数f(x)在区间[0,4]上的最大值;(2)若存在a∈(2,4],使得关于x的方程f(x)=t?f(a)有三个不相等的实数解,求实数t的取值范围.参考答案:【考点】分段函数的应用;根的存在性及根的个数判断.【分析】(1)求出f(x)的分段函数式,运用二次函数的性质,可得单调区间,求得最大值;(2)将x分区间进行讨论,去绝对值写出解析式,求出单调区间,将a分区间讨论,求出单调区间解出即可.【解答】解:(1)当a=3,x∈[0,4]时,f(x)=x|x﹣3|+2x=,可知函数f(x)在区间[0,]递增,在(,3]上是减函数,在[3,4]递增,则f()=,f(4)=12,所以f(x)在区间[0,4]上的最大值为f(4)=12.(2)f(x)=,①当x≥a时,因为a>2,所以<a.所以f(x)在[a,+∞)上单调递增.②当x<a时,因为a>2,所以<a.所以f(x)在(﹣∞,)上单调递增,在[,a]上单调递减.当2<a≤4时,知f(x)在(﹣∞,]和[a,+∞)上分别是增函数,在[,a]上是减函数,当且仅当2a<t?f(a)<时,方程f(x)=t?f(a)有三个不相等的实数解.即1<t<=(a++4).令g(a)=a+,g(a)在a∈(2,4]时是增函数,故g(a)max=5.∴实数t的取值范围是(1,).20.已知命题P:函数命题q:方程无实根。若p或q为真,p且q为假,求实数m的取值范围参考答案:解:p为真时:q为真时:

(1)p假q真:

(2)p真q假:

综上所述:m的取值范围或

略21.数列{an}前n项和为Sn,已知(1)求数列{an}的通项公式;(2)证明.参考答案:(1);(2)证明见详解.【分析】(1)由已知结合可得,变形得,利用叠加法可求.(2)由可得,用放缩法证明不等式.【详解】(1)由,得,以上两式相减得,则.两边同除以,可得.,,…,,以上个式子相加得,又,则,所以.(2)证明:因为,所以.所以.记,则,当时,,可得,所以.所以.【点睛】本题考查求数列的通项公式,不等式的证明.求数列通项公式时一般需要构造等差数列或等比数列.放缩法是证明数列不等式的一种常用方法,有时需要保留前面的若干项,只把后面的各项放缩.22.(7分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}.求:(1)A∩B;(2)(?UA)∪(?UB).参考答案:考点: 交、并、补集的混合运算.专题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论