版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市陆良县第一中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=的大致图象是()A.B.C.D.参考答案:A【考点】函数的图象;幂函数图象及其与指数的关系.【分析】筛选法:利用幂函数的性质及函数的定义域进行筛选即可得到答案.【解答】解:因为﹣<0,所以f(x)在(0,+∞)上单调递减,排除选项B、C;又f(x)的定义域为(0,+∞),故排除选项D,故选A.2..已知直线与曲线在点处的切线互相垂直,则为(
)A. B. C. D.参考答案:D因为,所以切线的斜率,而直线的斜率,由题设,即,应选答案D。3.已知函数,则的值为(
)A.1
B.2
C.-1
D.-2参考答案:B略4.已知A,B,C三点不共线,点O为平面ABC外的一点,则下列条件中,能得到P∈平面ABC的是()A. B.C. D.参考答案:B【考点】共线向量与共面向量.【分析】根据题意,由空间向量基本定理可得:P∈平面ABC的充要条件是存在实数α、β、γ,使得=α+β+γ成立,且α+β+γ=1,实数α、β、γ有且仅有1组;据此依次分析选项,验证α+β+γ=1是否成立,即可得答案.【解答】解:根据题意,A,B,C三点不共线,点O为平面ABC外的一点,若P∈平面ABC,则存在实数α、β、γ,使得=α+β+γ成立,且α+β+γ=1,实数α、β、γ有且仅有1组;据此分析选项:对于A:中,+(﹣)+=0≠1,不满足题意;对于B:中,++(﹣1)≠1,满足题意;对于C:=++中,1+1+1=3≠1,不满足题意;对于D:=﹣﹣中,1+(﹣1)+(﹣1)=﹣1≠1,不满足题意;故选:B.【点评】本题考查空间向量的共线与共面的判断,关键是掌握空间向量共面的判断方法.5.已知命题p:“?x∈[0,1],a≥2x”,命题p:“?x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是()A.[1,4] B.[2,4] C.[2,+∞) D.[4,+∞)参考答案:B【考点】命题的真假判断与应用.【分析】对于命题p:利用ax在x∈[0,1]上单调递增即可得出a的取值范围,对于命题q利用判别式△≥0即可得出a的取值范围,再利用命题“p∧q”是真命题,则p与q都是真命题,求其交集即可.【解答】解:对于命题p:?x∈[0,1],a≥2x,∴a≥(2x)max,x∈[0,1],∵2x在x∈[0,1]上单调递增,∴当x=1时,2x取得最大值2,∴a≥2.对于命题q:?x∈R,x2+4x+a=0,∴△=42﹣4a≥0,解得a≤4.若命题“p∧q”是真命题,则p与q都是真命题,∴2≤a≤4.故选:B.6.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是()A.对立事件 B.不可能事件C.互斥但不对立事件 D.不是互斥事件参考答案:C【考点】互斥事件与对立事件.【分析】对于红色圆环而言,可能是甲分得,可能是乙分得,也可能甲乙均没有分得,然后利用互斥事件和对立事件的概念得答案.【解答】解:甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.∴事件“甲分得红色”与“乙分得红色”是互斥但不对立事件.故选:C.7.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是(
)A.8 B.6 C.4 D.2参考答案:B考点:抽样试题解析:被抽出的号码构成以8为公差的等差数列,即所以第1组中用抽签的方法确定的号码是6.故答案为:B8.设函数的导函数为,且,则下列不等式成立的是
A.
B.C.
D.参考答案:B9.用反证法证明数学命题时,首先应该做出与命题结论相反的假设,否定“自然数a,b,c中恰有一个偶数”时正确的反设为(
)A.自然数a,b,c都是奇数
B.自然数a,b,c至少有两个偶数或都是奇数C.自然数a,b,c都是偶数
D.自然数a,b,c至少有两个偶数参考答案:B10.等差数列的前三项为,则这个数列的通项公式为(
)A.
B.
C.
D.参考答案:C
略二、填空题:本大题共7小题,每小题4分,共28分11.点P(1,3)关于直线x+2y﹣2=0的对称点为Q,则点Q的坐标为.参考答案:(﹣1,﹣1)【考点】直线与圆的位置关系.【分析】设点P(1,3)关于直线x+2y﹣2=0的对称点坐标为(a,b),则由垂直及中点在轴上这两个条件,求出a、b的值,可得结论.【解答】解:设点P(1,3)关于直线x+2y﹣2=0的对称点坐标为(a,b),则由,解得a=﹣1,b=﹣1,故答案为(﹣1,﹣1).【点评】本题主要考查求一个点关于某直线的对称点的坐标的求法,利用了垂直及中点在轴上这两个条件,属于基础题.12.如图,在三棱锥P-ABC中,PA⊥平面ABC,,,则三棱锥P-ABC外接球的表面积为
.参考答案:5π
13.若,则的值为
.参考答案:414.每次用相同体积的清水洗一件衣物,且每次能洗去污垢的,若洗n次后,存在的污垢在1%以下,则n的最小值为_________.参考答案:4略15.设,,则虚数的实部为.参考答案:0略16.将全体正奇数排成一个三角形数阵如图:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为.参考答案:n2﹣n+5考点: 归纳推理.专题: 探究型.分析: 根据数阵的排列规律确定第n行(n≥3)从左向右的第3个数为多少个奇数即可.解答: 解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第3个数为为第个奇数,所以此时第3个数为:1=n2﹣n+5.故答案为:n2﹣n+5.点评: 本题主要考查归纳推理的应用,利用等差数列的通项公式是解决本题的关键.17.计算
.参考答案:分析:根据定积分的几何意义,将定积分化为两个区域的面积求解.详解:令,可得,表示以原点为圆心,半径为2的圆的上半部分.结合图形可得所求定积分为和扇形的面积之和(如图),且中,,扇形中,.故.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设椭圆(a>b>0)经过点,其离心率与双曲线x2﹣y2=1的离心率互为倒数.(Ⅰ)求椭圆M的方程;(Ⅱ)动直线交椭圆M于A、B两点,求△PAB面积的最大值.参考答案:【考点】椭圆的简单性质.【分析】(Ⅰ)双曲线的离心率为,则椭圆的离心率为,将代入椭圆方程,即可求得a和b的值,即可求得椭圆M的方程;(Ⅱ)将直线代入椭圆方程,由韦达定理及弦长公式求得丨AB丨,则P到AB的距离为d=,则利用三角形的面积公式及韦达定理即可求得△PAB面积的最大值.【解答】解:(Ⅰ)双曲线的离心率为,则椭圆的离心率为,由椭圆经过点,得,解得:,∴椭圆M的方程为.…(Ⅱ)由,得,由△=(2m)2﹣16(m2﹣4)>0,得,,设A(x1,y1),B(x2,y2),∴,.∴=.又P到AB的距离为d=.则…∴当且仅当取等号.∴.…19.如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.参考答案:(Ⅰ)证明:设为的中点,连接,则∵,,,∴四边形为正方形,∵为的中点,∴为的交点,∵,,
∵,∴,,在三角形中,,∴∵,∴平面;
(Ⅱ)方法1:连接,∵为的中点,为中点,∴,∵平面,平面,∴平面.方法2:由(Ⅰ)知平面,又,所以过分别做的平行线,以它们做轴,以为轴建立如图所示的空间直角坐标系,由已知得:,,,,,,则,,,.∴∴∵平面,平面,∴平面;
(Ⅲ)设平面的法向量为,直线与平面所成角,则,即,解得,令,则平面的一个法向量为,又则,∴直线与平面所成角的正弦值为.
20.已知函数,.(1)解不等式;(2)若方程在区间[0,2]有解,求实数a的取值范围.参考答案:(1)[-2,4](2)【分析】(1)通过讨论的范围得到关于的不等式组,解出即可;(2)根据题意,原问题可以等价函数和函数图象在区间上有交点,结合二次函数的性质分析函数的值域,即可得答案.【详解】解:(1)可化为,故,或,或;解得:,或,或;不等式的解集为;(2)由题意:,.故方程在区间[0,2]有解函数和函数,图像在区间[0,2]上有交点当时,实数的取值范围是.【点睛】本题考查绝对值不等式的性质以及应用,注意零点分段讨论法的应用,属于中档题.21.已知且;:集合且.若∨为真命题,∧为假命题,求实数的取值范围.参考答案:对p:所以.若命题p为真,则有
;对q:∵且∴若命题q为真,则方程无解或只有非正根.∴或,∴∵p,q中有且只有一个为真命题∴(1)p真,q假:则有;(2)p假,q真:则有;略22.已知数列{an}满足an=3an﹣1+3n﹣1(n∈N*,n≥2)且a3=95.(1)求a1,a2的值;(2)求实数t,使得bn=(an+t)(n∈N*)且{bn}为等差数列;(3)在(2)条件下求数列{an}的前n项和Sn.参考答案:【考点】数列的求和;等差数列的通项公式.【分析】(1)当n=2时,a2=3a1+8,当n=3时,a3=3a3+33﹣1=95,可得a2=23,代入即可求得a1=5;(2)由等差数列的性质可知:bn﹣bn﹣1=(an+t)﹣(an﹣1+t)=(an+t﹣3an﹣1﹣3t)=(3n﹣1﹣2t).可知:1+2t=0,即可求得t的值;(3)由等差数列的通项公式可得bn=+(n﹣1)=n+,求得an=(n+)3n+,采用分组求和及“错位相减法”即可求得数列{an}的前n项和Sn.【解答】解:(1)当n=2时,a2=3a1+8,当n=3时,a3=3a3+33﹣1=95,∴a2=23,∴23=3a1+8,∴a1=5;(2)当n≥2时,bn﹣bn﹣1=(an+t)﹣(an﹣1+t)=(an+t﹣3an﹣1﹣3t)=(3n﹣1﹣2t).要使{bn}为等差数列,则必须使1+2t=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国汽车吊钩行业投资前景及策略咨询研究报告
- 2024年油脂精炼设备项目可行性研究报告
- 混频电路设计 课程设计
- 游戏软件开发课程设计
- 海水养殖专业课程设计
- 新能源消纳课程设计
- 桂花种子种植课程设计
- 2024版珠宝首饰包销合同范本
- 2024版第五章第五节合同标的担保与履约监督及纠纷解决合同3篇
- 2024年仪器设备购销合同3篇
- 小班数学《认识1到10的数字》课件
- 手工花项目策划书
- 个人理财(西安欧亚学院)智慧树知到期末考试答案2024年
- 医院内审制度
- 循环系统病症的临床思维
- 实现基于单片机的农业监测控制系统
- 总裁办公室度工作总结
- 中医养生的保护五官功能
- 2023年中考语文二轮复习:标点符号 真题练习题汇编(含答案解析)
- 2024年南京信息职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 2024年汽配行业分析报告
评论
0/150
提交评论