2023届江西省上高第二中学高三阶段性诊断考试数学试题_第1页
2023届江西省上高第二中学高三阶段性诊断考试数学试题_第2页
2023届江西省上高第二中学高三阶段性诊断考试数学试题_第3页
2023届江西省上高第二中学高三阶段性诊断考试数学试题_第4页
2023届江西省上高第二中学高三阶段性诊断考试数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届江西省上高第二中学高三阶段性诊断考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.2.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.3.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.4.把函数的图象向右平移个单位,得到函数的图象.给出下列四个命题①的值域为②的一个对称轴是③的一个对称中心是④存在两条互相垂直的切线其中正确的命题个数是()A.1 B.2 C.3 D.45.若点x,y位于由曲线x=y-2+1与x=3围成的封闭区域内(包括边界),则A.-3,1 B.-3,5 C.-∞,-36.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则()A. B. C. D.7.已知函数,其中,,其图象关于直线对称,对满足的,,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()A. B.C. D.8.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则()A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为C. D.三棱锥P-ABC的侧面积为9.已知集合,则=()A. B. C. D.10.已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为()A. B. C. D.411.已知等差数列的前项和为,若,,则数列的公差为()A. B. C. D.12.已知,且,则在方向上的投影为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有_________种.(用数字作答)14.已知随机变量服从正态分布,,则__________.15.已知是偶函数,则的最小值为___________.16.的二项展开式中,含项的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数()在定义域内有两个不同的极值点.(1)求实数的取值范围;(2)若有两个不同的极值点,,且,若不等式恒成立.求正实数的取值范围.18.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.19.(12分)在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_______________,计算的面积;请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.20.(12分)如图,在平面四边形中,,,.(1)求;(2)求四边形面积的最大值.21.(12分)如图,四棱锥中,底面为直角梯形,∥,为等边三角形,平面底面,为的中点.(1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.22.(10分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求的直角坐标方程和的直角坐标;(2)设与交于,两点,线段的中点为,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.2、D【解析】

设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.3、A【解析】

由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.4、C【解析】

由图象变换的原则可得,由可求得值域;利用代入检验法判断②③;对求导,并得到导函数的值域,即可判断④.【详解】由题,,则向右平移个单位可得,,的值域为,①错误;当时,,所以是函数的一条对称轴,②正确;当时,,所以的一个对称中心是,③正确;,则,使得,则在和处的切线互相垂直,④正确.即②③④正确,共3个.故选:C【点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.5、D【解析】

画出曲线x=y-2+1与x=3围成的封闭区域,y+1x-2表示封闭区域内的点(x,y)【详解】画出曲线x=y-2+1与y+1x-2表示封闭区域内的点(x,y)和定点P(2,-1)设k=y+1x-2,结合图形可得k≥k由题意得点A,B的坐标分别为A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范围为-∞,-3故选D.【点睛】解答本题的关键有两个:一是根据数形结合的方法求解问题,即把y+1x-26、D【解析】

由半圆面积之比,可求出两个直角边的长度之比,从而可知,结合同角三角函数的基本关系,即可求出,由二倍角公式即可求出.【详解】解:由题意知,以为直径的半圆面积,以为直径的半圆面积,则,即.由,得,所以.故选:D.【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式.本题的关键是由面积比求出角的正切值.7、B【解析】

根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其中,,其图像关于直线对称,对满足的,,有,∴.再根据其图像关于直线对称,可得,.∴,∴.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.8、C【解析】

根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,,,,,、不可能垂直,即不可能两两垂直,,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.9、D【解析】

先求出集合A,B,再求集合B的补集,然后求【详解】,所以.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.10、D【解析】

如图所示:过点作垂直准线于,交轴于,则,设,,则,利用均值不等式得到答案.【详解】如图所示:过点作垂直准线于,交轴于,则,设,,则,当,即时等号成立.故选:.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.11、D【解析】

根据等差数列公式直接计算得到答案.【详解】依题意,,故,故,故,故选:D.【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.12、C【解析】

由向量垂直的向量表示求出,再由投影的定义计算.【详解】由可得,因为,所以.故在方向上的投影为.故选:C.【点睛】本题考查向量的数量积与投影.掌握向量垂直与数量积的关系是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、1.【解析】试题分析:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5×2×1×1×1=1.考点:排列、组合及简单计数问题.点评:本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详.14、0.22.【解析】

正态曲线关于x=μ对称,根据对称性以及概率和为1求解即可。【详解】【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题.15、2【解析】

由偶函数性质可得,解得,再结合基本不等式即可求解【详解】令得,所以,当且仅当时取等号.故答案为:2【点睛】考查函数的奇偶性、基本不等式,属于基础题16、【解析】

写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)求导得到有两个不相等实根,令,计算函数单调区间得到值域,得到答案.(2),是方程的两根,故,化简得到,设函数,讨论范围,计算最值得到答案.【详解】(1)由题可知有两个不相等的实根,即:有两个不相等实根,令,,,,;,,故在上单增,在上单减,∴.又,时,;时,,∴,即.(2)由(1)知,,是方程的两根,∴,则因为在单减,∴,又,∴即,两边取对数,并整理得:对恒成立,设,,,当时,对恒成立,∴在上单增,故恒成立,符合题意;当时,,时,∴在上单减,,不符合题意.综上,.【点睛】本题考查了根据极值点求参数,恒成立问题,意在考查学生的计算能力和综合应用能力.18、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(Ⅱ)根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:(Ⅰ)当时,即,①当时,得,所以;②当时,得,即,所以;③当时,得成立,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则,解得,故的取值范围是.19、(1)见解析(2)1【解析】

(1)选②,③.可得,结合,求得.即可;若选①,②.由可得由,求得.即可;若选①,③,可得,又,可得,即可;(2)化简,根据角的范围求最值即可.【详解】(1)若选②,③.,,,,又,.的面积.若选①,②.由可得,,,又,.的面积.若选①,③,,又,,可得,的面积.(2),当时,有最大值1.【点睛】本题考查了正余弦定理,三角三角恒等变形,考查了计算能力,属于中档题.20、(1);(2)【解析】

(1)根据同角三角函数式可求得,结合正弦和角公式求得,即可求得,进而由三角函数(2)设根据余弦定理及基本不等式,可求得的最大值,结合三角形面积公式可求得的最大值,即可求得四边形面积的最大值.【详解】(1),则由同角三角函数关系式可得,则,则,所以.(2)设在中由余弦定理可得,代入可得,由基本不等式可知,即,当且仅当时取等号,由三角形面积公式可得,所以四边形面积的最大值为.【点睛】本题考查了正弦和角公式化简三角函数式的应用,余弦定理及不等式式求最值的综合应用,属于中档题.21、(1)见解析(2)【解析】

(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:∵为等边三角形,为的中点,∴∵平面底面,平面底面,∴底面平面,∴又由题意可知为正方形,又,∴平面平面,∴平面平面(2)如图建立空间直角坐标系,则,,,由已知,得,设平面的法向量为,则令,则,∴由(1)知平面的法向量可取为∴∴平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.22、(1),(2)【解析】

(1)利用互化公式把曲线C化成直角坐标方程,把点P的极坐标化成直角坐标;(2)把直线l的参数方程的标准形式代入曲线C的直角坐标方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论