空间数据的拓扑关系_第1页
空间数据的拓扑关系_第2页
空间数据的拓扑关系_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-.z空间数据的拓扑关系1.空间数据的拓扑关系

地理信息系统同其它一些事务信息处理系统如银行管理系统,图书检索系统的主要区别在于地理信息系统中具有大量几何目标信息。这些几何目标信息还包含两类信息,一类是目标本身的位置信息;另一类是地物间的空间关系信息。如果忽略几何目标间的空间关系信息,则从数据构造的角度看,地理信息系统的数据构造就可以设计成通常事务信息处理系统的形式。也就是说,由于地理信息系统必须同时考虑几何目标的空间关系、地物位置信息及特征信息,致使地理信息系统的数据构造比拟复杂。为了研究几何目标的空间关系,在此引入拓扑关系的概念。2.拓扑的根本概念

几何信息和拓扑关系是地理信息系统中描述地理要素的空间位置和空间关系的不可缺少的根本信息。其中几何信息主要涉及几何目标的坐标位置、方向、角度、距离和面积等信息,它通常用解析几何的方法来分析。而空间关系信息主要涉及几何关系的"相连〞、"相邻〞、"包含〞等信息,它通常用拓扑关系或拓扑构造的方法来分析。拓扑关系是明确定义空间关系的一种数学方法。在地理信息系统中用它来描述并确定空间的点、线、面之间关系及属性,并可实现相关的查询和检索。从拓扑观点出发,关心的是空间的点、线、面之间的联接关系,而不管实际图形的几何形状。因此,几何形状相差很大的图形,它们的拓扑构造却可能一样。

图3-4(a)(b)所表示的图,其几何形状不同,但它们结点间拓扑关系是一样的,均可用图3-4(c)所示结点邻接矩阵表示。(c)点为1处表示相应纵横两结点相连。

同样,图3-5(a)(b)所表示的图,其几何形状完全不同,但各面块之间的拓扑邻接关系完全一样,如图3-5(c)邻接矩阵所示,(c)点为1处表示相应的两个面相邻。

总之,拓扑关系反映了空间实体之间的逻辑关系,它不需要坐标、距离信息,不受比例尺限制,也不随投影关系变化。因此,在地理信息系统中,了解拓扑关系对空间数据的组织,空间数据的分析和处理都具有非常重要的意义。3.空间数据的拓扑关系

空间数据拓扑关系的表示方法主要有下述几种:

一、拓扑关联性

拓扑关联性表示空间图形中不同类型元素,如结点、弧段及多边形之间的拓扑关系。如图3-6(a)所示的图形,具有多边形和弧段之间的关联性P1/a1,a5,a6;P2/a2,a4,a6等,如图3-6(b)所示。也有弧段和结点之间的关联性,N1/a1,a3,a5,N2/a1,a6,a2等。即从图形的拓扑关联性出发,图3-6(a)可用如图3-6(b),(c)所示的关联表来表示。

用关联表来表示图的优点是每条弧段所包含的坐标数据点只需存储一次,如果不考虑它们之间关联性而以每个多边形的全部封闭弧段的坐标点来存储数据,不仅数据量大,还无法反映空间关系。

二、拓扑邻接性

拓扑邻接性表示图形中同类元素之间的拓扑关系。如多边形之间的邻接性,弧段之间的邻接性以及结点之间邻接关系(连通性)。由于弧段的走向是有向的,因此,通常用弧段的左右多边形号来表示并求出多边形的邻接性,如图3-6(a)所示图,用弧段走向的左右多边形表示时,得到表3-1(a)。显然,同一弧段的左右多边形必然邻接,从而得到如表3-1(b)所示的多边形邻接矩阵表。表中值为1处,所对应多边形相邻接,从表3-1(b)整理得到多边形邻接性表如表3-1(c)所示。

同理,从图3-6(a)可得到如表3-2所示的弧段和结点之间关系表。由于同一弧段上两个结点必连通,同一结点上的各弧段必相邻,所以分别得弧段之间邻接性矩阵和结点之间连通性矩阵如表2-3(a),(b)所示。

三、拓扑包含性

拓扑包含性是表示空间图形中,面状实体中所包含的其它面状实体或线状、点状实体的关系。

面状实体中包含面状实体情况又分为三种情况,即简单包含、多层包含和等价包含。分别如图3-7(a),(b)和(c)所示。

图3-7(a)中多边形P1中包含多边形P2,图3-7(b)中多边形P3包含在多边形P2中,而多边形P2,P3又都包含在多边形P1中。图3-17(c)中多边形P2,P3都包含在多边形P1中,多边形P2、P3对P1而言是等价包含。3.2.3拓扑关系的关联表达

拓扑关系的关联表达是指采用什么样的拓扑关联表来表达空间位置数据之间关系。

在地理信息系统中,空间数据的拓扑关联表达尤为重要,通常可采用全显式表达和半隐式表达方式。

一、全显式表达

全显式表达不仅明确表示空间数据多边形→弧段→点之间拓扑关系,同时还明显表达点→弧段→多边形之间关系。

为了描述图3-8所示图及其拓扑关系,可用关联表表3-4到表3-7来表示。其中表3-4,3-5自上到下表示根本元素之间关联性;表3-6,3-7自下到上表示根本元素之间关联性。这些表的集合即为图3-8的拓扑关联表的全显式表示。

二、半隐式表示

分析表3-4到表3-7可知,从表3-5可以推导出表3-6。同样,从表3-6可推导出表3-5,而且,这种推导相当简单。同时,从表3-4和表3-5也可推导出表3-7,但这种推导关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论